
Genetic Algorithms for the Assembly Line
Balancing Problem: A Real-World Automotive
Application

Solivan Arantes Valente1, Heitor Silvério Lopes2, Lúcia Valéria R. de Arruda2

1UnicenP - Centro Universitário Positivo, Curitiba PR, Brazil
2CEFET-PR - Centro Federal de Educação Tecnológica do Paraná, Curitiba PR,
Brazil

Abstract. This paper reports the use of Genetic Algorithms (GAs) to solve the
assembly line balancing problem in a real-world application: a car assembly
facility. The problem is modeled and a standard GA is applied. The line layout
solution found by GA reduces by 28.5% the total assembly time of the current line
layout, which implies in a significant reduction of costs. This result suggests that
the use of GAs in real-world industrial problems can be very promising.

Introduction

A Genetic Algorithm (GA) is a well-known search and optimization method based
on Darwin’s principle of evolution of the species and on some basic fundamentals
of genetics [3]. From the classifying point of view, GA belongs to the area of
Evolutionary Computation, which also includes Genetic Programming, Classifier
Systems, Evolution Strategies and Evolutionary Programming.

The main scope of GAs is optimization, and many engineering problems are opti-
mization problems. Therefore, along the last decades GAs have been successfully
applied to several problems in several Engineering fields. In optimization, the goal
is to find a particular set of values for the variables of the problem that minimizes
a cost function or maximizes a gain function. There are numerous optimization
methods, numerical and algebraic, that search for a set of optimal values in the
multidimensional search space of the problem at hand. However, in problems
where non-linearity, noise, discontinuity or extremely large search spaces are pre-
sent, those methods may be computationally unfeasible or may not apply at all. It
is in this scenery of multimodal problems that are hardly handled by classic meth-
ods that GAs come as a simple and efficient alternative.

Genetic algorithms and the assembly line balancing
problem

A strong argument for the use of GAs in the well-known industrial assembly line
balancing problem is the huge search space of this class of combinatorial problem.
Even the balancing of a simple line may become a quite hard and slow task for a
deterministic algorithm, given the size of the search space, as we shall exemplify
below.

In this work, the last stage of a larger automotive assembly facility is optimized.
All data used in this work are real and the name of company is purposely omitted.
The part of the assembly line considered here is composed by 10 workstations. At
each one of them workers can perform their jobs at both sides of the line, left and
right, which totalizes 13 activities to be done.

A brief analysis of the line topology (see Fig. 1) shows that the number of possible
layout configurations is given by a permutation P2n,p , i.e., (2n!)/(2n-p)!, where “n”
is the number of workstations and “p” is the number of activities to be performed.
The assembly line under analysis has n=10 and p=13, which results in about
4.83.1014 possible arrangements for the line layout. If one expands the planning
horizon to include the whole final line of this same facility, in which there are 66
activities to be done in 49 workstations, the number of possible configurations
raises to about 3.58.10118. This search space is untreatable by any sequential
search method, in acceptable time, regardless the computational power available.

The optimization of the working time in an industrial facility has some obvious
consequences. The productivity growth reflects directly in the company’s profit,
allowing recovery of the initial investments in a shorter time. Besides, it increases
the company’s ability to respond to the market demands. In this paper it is re-
ported how the assembly line balancing problem can be modeled and successfully
solved with a standard GA.

Some work have already been developed using GAs in optimization of combinato-
rial problems in industry, including variations of the classical job shop/flow shop
problems, as well as more complex planning problems. See, for instance, Chan &
Hu [2], Knosala & Wal [5], Kopfer [6], Li & Love [7], Li et al [8], Nakano [9],
Reeves [10], and Warwick and Tsang [11]. The solution of the assembly line bal-
ancing problem with GAs has been particularly treated by Anderson and Ferris
[1]. In this work the authors propose the variables coding and the precedence ma-
trix that, with minor changes, were used in the current work. However, they im-
plemented a parallel GA, which was not the case here.

The Assembly Line Optimization Problem

The assembly line under analysis is depicted in Fig. 1. From left to right, vehicles
being assembled enter the line and pass through ten workstations (P1 to P10). At
each one of them there may be activities (A i) at one or both sides of the line. The
line must not be completely compacted, i.e., it must not have activities at both
sides of the line at all workstations due to space restrictions caused by the machin-
ery and logistics shelves placement.

Fig. 1. Representation of the production line under analysis.

Each workstation has a fixed length (about 5m) and the vehicle moves on softly,
without stopping along the process. The total working time at a given workstation
is represented by its longest activity, since both sides start at the same time. For
example, the total working time of, say, P2 workstation is given by the longest du-
ration of activities A2 and A3.

The total working time of this line section is given by the sum of all workstations’
working times. In the real line, not yet optimized, the current time is 21min 22s (or
21.37min).

Solution using genetic algorithms

Variables encoding

Figure 2 shows the chromosome encoding adopted in this work. The chromosome
is composed by 13 integer numbers, one for each activity to be performed in the
line, all between 1 and 10. The content of each “gene” in the chromosome identi-
fies one of the 10 workstations, and the position it occupies maps the activities
performed at that workstation. For instance, in Fig. 1, activities A2 and A3 are both
performed at workstation P2, activity A6 at workstation P5, and so on.

Fig. 2. Chromosome encoding.

Although this is a combinatorial problem, the special crossover operators pro-
posed by Goldberg [3], such as PMX, OX and CX, do not apply since the prece-
dence order between the activities does not follow directly their numbering. For
example, activity A11 must be performed before activity A9 (see Table 2) even
though it appears in a rightmost position of the chromosome. Thus, the informa-
tion of the relative position of a gene with respect to another is not relevant. This
is a special feature of such approach comparing to other implementations found in
the literature.

Relevant data

Two fundamental information are needed to model the problem: the time neces-
sary to perform every activity and the precedence order between them. The data
shown in Tables 1 and 2, from the real production line, represent, respectively, the
execution timing for each activity and the precedence among activities.

In Table 1, Effective Working Time – EWT is the time necessary for the operation
to be performed by the worker. Variable Operations Time – VOT is the time nec-
essary for other associated operations (e.g., the time needed for the worker to get a
part in the shelf); and the Total Activity Time – TAT is the sum EWT+VOT. No-
tice that the time fractions are given in hundreds of minutes, so as to facilitate
arithmetic operations, since conversions are avoided.

Table 2 shows the precedence relations between activities. For a given pair of ac-
tivities, A i and Aj, there is precedence between them if there is a “1” in the inter-
section of the line pointed by A i and the column pointed by of Aj. Otherwise there
is no precedence.

Table 1. Execution time of activities

Time (minutes)
Activity Effective

Working Time
(EWT)

Variable Opera-
tions Time (VOT)

Total Activity
Time (TAT)

A1 0.91 0.24 1.15
A2 1.84 0.53 2.37
A3 1.64 0.43 2.07
A4 0.99 0.31 1.30
A5 2.14 0.56 2.70
A6 1.89 0.63 2.52
A7 1.78 0.28 2.06
A8 1.46 0.56 2.02
A9 1.72 0.52 2.24
A10 1.58 0.37 1.95
A11 1.81 0.46 2.27
A12 1.70 0.52 2.22
A13 2.17 0.37 2.54

Table 2. Precedence between pairs of activities

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13

A1 0 0 0 0 0 0 0 0 0 0 0 0 0
A2 1 0 0 0 0 0 0 0 0 0 0 0 0
A3 1 0 0 0 0 0 0 0 0 0 0 0 0
A4 1 1 1 0 0 0 0 0 0 0 0 0 0
A5 1 0 0 0 0 0 0 0 0 0 0 0 0
A6 1 0 0 0 1 0 0 0 0 0 0 0 0
A7 1 0 1 0 0 0 0 0 0 0 0 0 0
A8 1 0 0 0 1 0 0 0 0 0 0 0 0
A9 1 0 1 0 1 0 1 1 0 0 1 0 0
A10 1 0 1 0 1 0 1 1 0 0 1 0 0
A11 0 0 0 0 0 0 0 0 0 0 0 0 0
A12 1 0 1 0 1 0 1 1 0 0 0 0 0
A13 1 0 1 0 1 0 1 1 0 0 0 1 0

For instance, consider activities A9 and A11 (as mentioned in ‘Variables encoding’
section). Table 2 shows that there is precedence between these activities (in this
order), meaning that activity A11 must be performed before activity A9. The recip-

rocal is somewhat obvious, which means that a position filled with a “1” must
have its symmetric counterpart filled with a “0”.

The use of a table to represent the precedence orders between activities has some
advantages: first, it allows a quick overview by inspection, second, it allows a
faster correction of any precedence that should ever be altered due to process
modifications, and finally it provides faster calculations of the violations when the
GA has to compute the penalty function.

Objective and fitness functions

As mentioned before, the total working time of a workstation is given by its long-
est activity since both start at the same time. If there’s only one activity associated
to the workstation, its working time is given by this activity duration. Worksta-
tions without activities are given null (0) work time.

The objective function is computed as the sum of the working times of all work-
stations, given by equation (1), where TAT[Aleft(Pi)] is the Total Activity Time of
the activity assigned to the left side of the ith workstation and TAT[A right(Pi)] is its
equivalent to the right side.

{ }∑
=

=
10

1

)]([)],([max
i

irightileftobj PATATPATATF (1)

Finally, the fitness function (to be maximized) is computed by equation (2), taking
into account the penalties (to be explained in the next section). Its value is then
norma lized, i.e. forced to be in the interval [0,1]:

max.72

.
1

TpSTT

PenaltyCF
F

pobj

fitness +

+
−= (2)

Where Cp is a penalty application coefficient (set to 2.0), 72 is the maximum pos-
sible number of violations1 and STT is the sum of the duration time for all activi-
ties, given by equation (3).

∑
=

=
13

1

)(
i

iATATSTT (3)

1 From the expression 11*2+9*2+7*2+5*2+3*2+1*2=72, which is obtained for the worst

case, where the 2 activities assigned to the first workstation violate all the precedence
relative to the other 11 activities, the 2 activities assigned to the second workstation vio-
late all the precedence relative to the 9 activities left, and so on.

Restrictions and Penalties

During the evolutionary process not all individuals represent feasible solutions.
Nevertheless, as pointed out by Anderson and Ferris [1] it is interesting to keep
some of these “unfit” individuals in the population in order to maintain the genetic
diversity. Thus, the so called “candidate solutions” that don’t represent adequate
solutions to the optimization problem are better “punished” instead of simply
eliminated. The restrictions imposed to the candidate solutions are:

a) There must be no more than two activities at each workstation. This re-
striction is due to the physical limitations of the production line, since
workers can be at its left and right sides. (Remark: there are workstations
where activities are performed under or over the vehicle; however, in or-
der to simplify the planning, activities are always assigned to the side of
the line where the workers stand).

b) The order of the activities must obey the precedence shown in Table 2.

When such restrictions are not fully satisfied, penalties are imposed to the candi-
date solution. This reflects in a fitness decrement for that individual as a function
of the violation to the restrictions above, according to the criteria:

a) Any individual having more than 2 activities at a workstation is given
maximal penalty: its fitness is set to 0. Since this restriction is a physical
limitation, it is not interesting to have candidate solutions like this.

b) Individuals that respect the first restriction and violate the precedence or-
der among activities are punished proportionally to the number of viola-
tions, according to equation (4):

Penalty = V.Tpmax (4)

Where V is the number of precedence violations and Tpmax is the duration of the
longest activity in the line.

GA parameters

After several experiments with different combinations of parameters for the GA,
the best results were achieved with the parameters described in the sequence. The
two classical genetic operators were used: one-point crossover (with probability of
80%) and simple bit mutation (with probability of 4% per bit). Elitism was used
throughout generations so as to always keep the best individual. Since elitism may
cause a harder selective pressure, a more efficient selection method than the clas-
sical roulette wheel was used: stochastic universal sampling. The population size
was set to 100 individuals with generation gap 1, meaning that a whole new
population was created every generation. The criterion used to stop the evolution-
ary process was simply timing-out a given number of generations, set to 200. The

development of the algorithm was based in a former version of the software pack-
age named GALOPPS (Genetic Algorithm Optimized for Portability and Paralle l-
ism), developed by Goodman [4], and written in ANSI C.

Results

The evolution of fitness is shown in Fig. 3. The “x” axis represents the generation
number and the “y” axis represents the fitness value (between 0 and 1). The upper
trace is the fitness of the best individual and the lower trace is the average fitness
of the whole population. Every run took around 0.85s of processing time in a
Pentium TM III 500MHz under Windows TM 98.

Fig. 3. Fitness evolution.

For the evaluation of the best individual found in each run of the GA, a Microsoft
Excel TM worksheet was built in order to compute the total working time associ-
ated with the line layout represented by such individual. This worksheet also
analyses the chromosome mapping and produces a sketch of the line layout. Part
of the worksheet is shown in Fig. 4.

Fig. 4. Worksheet for analysis of the best individual.

After running the GA several times, the best individual ever found was the one
represented in Fig. 5. This individual represents a solution for the assembly line

layout, which is sketched in Fig. 6. The best solution found leads to a total work-
ing time of 15.29min, which represents a 28.5% reduction of the current line con-
figuration time (21.37min).

Fig. 5. Best individual ever found.

Fig. 6. Best solution ever found (line layout).

Conclusions

We have shown with this work that GAs can be very useful to find better alterna-
tives for the layout of an assembly line. If such analysis had been used during the
facility design phase, it could have suggested improvements in the layout of the
whole production line, optimizing the overall working time.

Considering the dimensionality of the search space and the combinatorial nature
of the problem, GAs were found to be very efficient and fast. A comparison with
another classical methodologies for the line-balancing problem shall be done in
the future to investigate how competitive a GA is.

For the sake of simplicity, the present work did not consider logistics issues, such
as parts shelves disposal. It was not analyzed, as well, the costs due to the layout
changes in the current line. Notwithstanding, the solution found is real and shows
that GAs can be used as a powerful tool for the industrial organization, with a sig-
nificant gain in time that can reflect in the overall productivity and, possibly, in
profit increases for the company.

References

1. Anderson, E.J. & Ferris, M.C. (1994). Genetic algorithms for combinatorial optimiza-
tion: the assembly line balancing problem. ORSA Journal of Computing , vol. 6, no. 2,
pp. 161-173.

2. Chan, W.T. & Hu, H. (2000). Precast production scheduling with genetic algorithms .
Proc. of 2000 Congress on Evolutionary Computation , vol. 2, pp. 1087-1094.

3. Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine
Learning . Addison-Wesley.

4. Goodman, E.D. (1996). An Introduction to Galopps – The Genetic ALgorithm Optimized
for Portability and Parallelism System. Technical Report #96-07-01 , Michigan State
University, East Lansing.

5. Knosala, R. & Wal, T. (2001). A production scheduling problem using genetic algo-
rithms. Journal of Materials Processing Technology , vol. 109, no. 1-2, pp. 90-95.

6. Kopfer, H. (1996). Evolutionary search and the job shop: investigations on genetic algo-
rithms for production scheduling . Heidelberg: Physica-Verlag.

7. Li, H. & Love, P. (1998) Site-level facilities layout using genetic algorithms. Journal of
Computing in Civil Engineering , vol. 12, no. 4, pp. 227-231.

8. Li, Y. & Ip, W.H. & Wang, D.W. (1998) Genetic algorithm approach to earliness and
tardiness production scheduling and planning problem. International Journal of Pro-
duction Economics, vol. 54, no. 1, pp. 65-76.

9. Nakano, R. (1991). Conventional genetic algorithm for job shop problems. Proc. of the
4 th International Conference on Genetic Algorithms, pp. 474-479.

10. Reeves, C.R. (1995). A genetic algorithm for flowshop sequencing. Computers in Op-
erations Research , vol. 22, no. 1, pp. 5-13.

11. Warwick, T. & Tsang, E.P.K. (1996). Tackling car-sequencing problems using a ge-
neric genetic algorithm. Evolutionary Computation , vol. 3, no 3, pp. 267-298.

