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Absiract

This work is intended to discover classification rules for diagnosing certain pathologies. In
order to discover these rules it was used genetic programming as well as some concepts of
data mining, particularly the emphasis on the discovery of comprehensible knowledge.

1. Introduction

There is agrowing interest in the area of data mining, where the objective is discovering knowledge
not only correct, but dso comprehensible and interesting for users (Fayyad et d, 1996). In such a
way, knowledge contained in databases can be extracted and combined with a user’s own
knowledge in order to better support the decisionmaking process.

In a database it is possible that there are severd atributes related to each other and the user is not
aware of this. In this case, data mining techniques can be employed to discover high-leve rules that
identify unknown relaionship between atributes. The use of Genetic Programming - GP (Koza,

1992) to discover comprehensible classfication rules, in the spirit of data mining, is sparsely found in
the recent literaiure. We bdlieve tha this is a very promisng area of research, snce GP has
demondtrated to be efficient in problems with large search spaces. In the particular case of data
mining, GP can be usad to search the space of dl possible vaues of attributes and its combinations
that meke up dassfication rulesfor agiven database.

This paper is organized as follows. Section 2 presents a brief overview of genetic programming.
Section 3 describes our genetic programming system for discovering classification rules. Section 4
reports computationa results. Section 5 concludes the paper.

2. A brief overview of genetic programming

Genetic programming is a powerful seerch method inspired by naturd sdection. The basic ideais to
evolve a population of ““programs’ candidate to the solution of a specific problem. A program (an
individua of the population) is usualy represented in the form of atree, where the internd nodes are
functions (operators) and the leaf nodes are termina symbols. Both the function set and the termind
st must contain symbols appropriate for the target problem. For instance, the function set can



contain arithmetic operators, logic operators, mathematica functions, etc; whereas the termina set
can contain the variables (attributes) of the target problem.

Each individud of the population is evauated with respect to its ability to solve the target problem.

This evauation is performed by a fitness function. Then the individua undergoes the action of genetic
operators such as reproduction and crossover. The reproduction operator sdects individuds of the
current population in proportion to their fitness values, o thet the fitter an individud is the higher the
probability thet it will take part in the next generation of individuas. The crossover operator replaces
arandomly sdlected subtree of an individuad with arandomly chosen subtree from another individua.

Once reproduction and crossover have been gpplied according to given probabilities, the newly
cregted generation of individuds is evauated by the fitness function. This process is repeated
iteratively, usudly for a fixed number of generations. The result of genetic programming (the best
solution found) is the fittest individua produced dong dl generations.

3. A genetic programming system for discovering classification rules

This work addresses the task of classficaion in the context of data mining. In this context,

knowledge is usudly represented in the form of ‘IF-THEN’ rules. The ‘IF part of the rule is the
antecedent and contains a combination of attributes in digunctive normd form. The ‘THEN' part is
the consequent and contains the class that will be predicted for a database record that satisfies the
rule antecedent. For instance, in a medica domain, considering a database of medica records, the
antecedert could be a combination of symptoms and the consequent agiven disease.

In the case of this work, individuas represent the antecedent of a rule, but not the consequent, since
for each GP run the consequent is fixed for dl individuds. Both the function set and the termind set
must contain symbols gppropriate for the target problem. The function set in this work contains the
logica and relational operators shown in table 1 and the termina st contains the attributes of the
database.

Due to the closure property of GP, every function should accept as arguments any combination of
atributes or vaues returned from other functions. This property imposes serious limitetions to GP
when mining rules in a database, since databases have attributes of different @dta types. To
circumvent this problem, a constrained- syntax GP was devel oped. Thus, some restrictions should be
consdered for the antecedent, in order to have avalid rule. First, achild node of an*AND’ function
cannot be either an ‘OR’ function nor an attribute or &tribute value. In other words, a child node of
an AND function must be either an AND function or a comparison operator in £, <, =, 1}.
Second, a child of comparison operator must be either an attribute or an attribute vaue. Third

restriction is concerned to the uniqueness of an attribute in a rule antecedent, i.e. each attribute can
occur only once in a given rule antecedent. This is implemented to avoid inconsstent rules such as:
“IF (Sex=mde) AND (Sex=femde) ....". The last retrictionisrelated to the input and output of the
logica and relationd functions (operators), which are shown in Table 1. This table specifies, for each
operator (function), what are the valid data types for itsinput arguments and its outpui.

3.1. Fitness function



The fitness function evauates the qudity of an individud (rule). This means that a number of records
of the database are classfied by the rule under evauation and its predictive performance is
measured. The fitness function usad in this paper follows the work of Bojarczuk, Lopes and Freitas
(2000).

Table 1: Input and output arguments of operators used.

Operators (functions) | Datatype of input arguments Data type of output
3,< (red, red) boolean
=1 (categorical, categorica) boolean
AND, OR, NOT (boolean, boolean) boolean

Before we can define the fitness function, it is necessary to recal a few basic concepts on
classification rule evauation. When using a rule for dassfying an example, depending on the dass
predicted by a rule and on the true class of the patient (database record), four types of results can be
observed for the prediction, asfollows:
. true pogtive {p)- the rule predicts that the patient has a given disease and the patient does
have that disease;
fdse postive (fp) - the rule predicts that the patient has a given disease but the patient does
not have it;
true negative (tn)- the rule predicts that the patient does not have a given disease, and indeed
the patient does not have it;
fase negative €n)- the rule predicts that the patient does not have a given disease but the
patient does haveit.

The fitness function used in this work combines two indicators that are commonplace in the medica
domain, namdy the sengtivity (Se) and the specificity (Sp), defined asfollows:

Se=tp/(tp + fn) @
S=tn/(tn+ fp) 2

where tp, fp, tn and fn are variables whose vaue is the number of patients observed in each
corresponding kind of prediction result, as defined above.

In practice, conventiond GP does not produce smple solutions. Conddering that the
comprehensibility of arule isinversdy proportiond to its size, something has to be done to enforce
GP to produce rules as short as possible. Hence, we define a measure of simplicity Sy) of arule,
given in equation 3:

5= (maxnodes- 0.5* numnodes- 0.5) 3
(maxnodes- 1)

Where numnodes is the current number of nodes (functions and terminds) of an individud, and
maxnodes is a parameter of the GP regarding the maximum dlowed size of the tree. Equation 3
produces its maximum vaue of 1 when aruleis so Smplethat it containsjust one term. This equation
produces its minimum vaue of 0.5 when the number of nodes equas the maximum alowed. The
reason to set the lower limit to 0.5 is to pendize brge-szed individuds without forcing them to
disgppear. This is especidly important in the early generations of a run, when mog individuas will



have very low predictive accuracy, but can carry good genetic materiad cgpable of being improved
by genetic operators.
Findly, the fitness function used by our GP is defined as the product of the indicators of predictive
accuracy and smplicity, i.e.:

fitness= Se* * Sy 4

Therefore, the god of our GP is to maximize both the Se and the Sp, and minimize the rule Sze a the
sametime Thisis an important point, Snce it would be rdatively trivid to maximize the vaue of one
of these indicators a the expense of sgnificantly reducing the values of the others. Furthermore, the
above fitness function has the advantages of being smple and returning a meaningful, normalized
vaue in the range [0..1]. For further andyss of the motivation for maximizing the product Se* Sp,
regardless of rule smplicity and independently of any evolutionary dgorithm, see Hand (1997).

4. Computational results

Three experiments were done using databases of medicad domains. chest pain, dermatology and
breast cancer. The last two can be found in the Internet (Blake & Merz, 1998) and the first was
used in Lopes (1999).
The chest pain database has 12 classes, corresponding to diseases commonly related to chest pain,
and has 138 records with 161 attributes (binary and categorical) each. Attributes are related to the
characterigtics of chest pain, including symptoms, sgnds, clinical history and laboratory tests.
The dermatology database (Demiroz et &, 1998) has 6 classes related to dermatologica pathologies,
and contains 366 records, with 34 attributes each. All attributes have values mapped in the range
[0..3], except age (integer, in years) and family history (0,1).
The breast cancer database is extensively used by machine learning researchers and is related to the
recurrence of breast cancer of patients that undergo surgery. The database has 286 records, with 9
attributes each, and only two classes.
In al three experiments, the database was divided into five partitions, being 1/5 for testing and 4/5
for traning Then a wdl-known 5-fold cross-validation procedure was performed. For each
experiment (data set), GP was run once for each class. Once dl runs of GP for a given data set were
completed, al the rules found by GP in that experiment were grouped into arule s, i.e. the set of dl
discovered rules (for dl classes) for that data set. The qudity of that rule set was evaluated according
to two criteria: the predictive accuracy of the rule set and the comprehensibility of therules.
The predictive accuracy of a rule set was measured by its classfication accuracy on the test s, as
usud. This seems to be the most widely used measure of predictive accuracy in the literature, in spite
of its drawbacks (Hand, 1997). The results obtained for the three databases are shown in Table 2.
The second column shows the results for the constrained-syntax genetic programming (GP) system
proposed in this paper. The numbers after the “+” symbol are the standard deviations of the
corresponding accuracy rates. The third column shows the results for the genetic agorithm (GA)
proposed by (Fidelis et d. 2000). In their paper the authors report results for the Dermatology and
Breast Cancer data sets, but not for the Chest Pain data set. The proposed GP obtained accuracy
rates somewhat better than the GA in both the Dermatology and the Breast Cancer data sets.

Table 2: Classification accuracy rate (%) for the three medical databases.
Database GP of thispaper GA of (Fiddiset al. 2000)
Chedt pain 80,31+ 7,80 N/A




Dermatology 96,64 + 2,27 94.96
Breast cancer 71,79+ 9,36 67.39

In this work, we are interested not only in the predictive accuracy of the discovered rules, but dsoin

the comprehengibility of the rules - in the spirit of data mining. Rule comprehenghility is Sgnificantly

more difficult to measure in an objective way, in comparison with predictive accuracy. There is a
consderable subjective agpect in the former. In most of the literature, however, rule
comprehensibility is associated with syntactic complexity. In generd, the smaler the number of rules
and the shorter (the smdler the number of conditions of) the rules the better. In this paper we aso

follow this principle for evaluating the comprehensibility of the discovered rules.

Concerning the number of discovered rules, our GP system (by design) provides the best possible
result, which is exactly one rule for each dass. This minimization of the number of discovered rules
saves the potentidly precious time of the human user, who is required to analyze only the very best
rule found for each class. In contrast, some data mining agorithms may eesily overload the user with
a large number of discovered rules, which can hardly be considered “comprehensible’ knowledge.

As a griking evidence of the smplicity of the rules, they are shown in table 3, 4 and 5. These rules
are condderably smdler than the rules discovered by the GA proposed by (Fidelis et a. 2000),

which aso discoversasingle rule for each class.

Table 3: Results of learning from the full chest pain data set

Class Discovered rule Class Discovered rule
1 (eco_acsorirrad_mse) 7 Rx_aep
2 Me nitrato 8 eco_dp
3 Ecg_essst 9 (da_ulceraor faamd_dli)
4 Rx_daad 10 azia
5 Ecg bvc 11 (fatdes_com or dor_musc)
6 Fr_imaob 12 Me ansol
Table 4: Results of learning from the full breast cancer data set
Class Discovered rule
1 (deg_mdig? 2)
2 ((inv_nodes 3 1) or
(tumor_size=5))

Table 5: Results of learning from the full dermatology data set

Class Discovered rule Class Discovered rule
1 (clubbing® Q) 4 (spongiosist 0)
2 (spongiosis3 2) 5 (fibrogs? Q)
3 (band_like3 2) 6 (perifollicular 1 Q)

5. Conclusions

In this paper we have proposed a constrained-syntax genetic programming System for discovering
high-level, comprehensible classfication rules. Results obtained so far are quite promising. From a



predictive accuracy viewpoint, the results are smiar to results found in the literature using other
goproaches. A remarkable result obtained by proposed genetic programming system is the
comprehensibility of the discovered rule set: essentidly one rule per class and with a very smal
quantity of atributes (conditions) in each rule.
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