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Abstract  

This work is intended to discover classification rules for 
diagnosing certain pathologies. In order to discover these 
rules we have developed a new constrained-syntax genetic 
programming algorithm based on some concepts of data 
mining, particularly with emphasis on the discovery of 
comprehensible knowledge. We compare the performance 
of the proposed GP algorithm with a genetic algorithm and 
with the very well-known decision-tree algorithm C4.5. 
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Introduction   

In essence, data mining consists of discovering knowledge 
that is not only correct but also comprehensible and 
interesting for users [4]. Therefore, discovered knowledge 
can be combined with a user’s own knowledge in order to 
better support the decision-making process. In this paper we 
use Genetic Programming - GP [9] – to discover 
comprehensible classification rules from data. We believe 
that this is a very promising area of research, since GP has 
demonstrated to be efficient in problems with large search 
spaces. In addition, GP performs a global search in the 
space of candidate rules, which intuitively makes it to cope 
better with attribute interaction than local search algorithms 
[6][7]. 

This paper is organized as follows. Section 2 presents a 
brief overview of genetic programming. Section 3 describes 
our genetic programming system for discovering 
classification rules. Section 4 reports computational results. 
Section 5 concludes the paper. 

A Brief Overview of Genetic Programming   

Genetic programming is a powerful search method inspired 
by natural selection [9]. The basic idea is to evolve a 
population of ”programs” candidate to the solution of a 

specific problem. A program (an individual of the 
population) is usually represented in the form of a tree, 
where the internal nodes are functions (operators) and the 
leaf nodes are terminal symbols. Both the function set and 
the terminal set must contain symbols appropriate for the 
target problem. For instance, the function set can contain 
arithmetic operators, logic operators, mathematical 
functions, etc; whereas the terminal set can contain the 
variables (attributes) of the target problem.  

Each individual of the population is evaluated with respect 
to its ability to solve the target problem. This evaluation is 
performed by a fitness function. Then the individual 
undergoes the action of genetic operators such as 
reproduction and crossover. The reproduction operator 
selects individuals of the current population in proportion to 
their fitness values, so that the fitter an individual is the 
higher the probability that it will take part in the next 
generation of individuals. The crossover operator replaces a 
randomly selected subtree of an individual with a randomly 
chosen subtree from another individual.  

Once reproduction and crossover have been applied 
according to given probabilities, the newly created 
generation of individuals is evaluated by the fitness 
function. This process is repeated iteratively, usually for a 
fixed number of generations. The result of genetic 
programming (the best solution found) is the fittest 
individual produced along all generations. 

A Genetic Programming System for 
Discovering Classification Rules   

This work addresses the task of classification in the context 
of data mining. In this context, knowledge is usually 
represented in the form of ‘IF-THEN’ rules. The ‘IF’ part of 
the rule is the antecedent and contains a combination of 
attributes in disjunctive normal form. The ‘THEN’ part is 
the consequent and contains the class that will be predicted 
for a database record that satisfies the rule antecedent. For 
instance, in a medical domain, considering a database of 
medical records, the antecedent could be a combination of 
symptoms and/or signals and the consequent a given 



disease. 

In the case of this work, individuals represent the 
antecedent of a rule, but not the consequent, since for each 
GP run the consequent is fixed for all individuals. The 
function set in this work contains the logical and relational 
operators shown in table 1 and the terminal set contains the 
attributes of the database. 

Table 1: Operators and the data types of their arguments 

Operators 
(functions) 

Data type of 
input 

arguments 

Data type of 
output 

≥, < (real, real) Boolean 

=, ≠ (categorical, 
categorical) Boolean 

AND, OR, NOT (boolean, 
boolean) Boolean 

 

Due to the closure property of GP [9], every function 
should accept as arguments any combination of attributes or 
values returned from other functions. This property imposes 
serious limitations to GP when discovering rules in a 
database, since databases have attributes of different data 
types. To circumvent this problem, a constrained-syntax GP 
was developed. Thus, some restrictions should be 
considered for the antecedent, in order to have a valid rule. 
First, a child node of an ‘AND’ function cannot be either an 
‘OR’ function nor an attribute or attribute value. In other 
words, a child node of an AND function must be either an 
AND function or a comparison operator in {≥, <, =, ≠}. 
Second, a child node of a comparison operator must be 
either an attribute or an attribute value. The third restriction 
is concerned with the uniqueness of an attribute in a rule 
antecedent, i.e. each attribute can occur only once in a given 
rule antecedent. This is implemented to avoid inconsistent 
rules such as: “IF (Sex=male) AND (Sex=female) ....”. The 
last restriction is related to the input and output of the 
logical and relational functions (operators), which are 
shown in Table 1. This table specifies, for each operator 
(function), what are the valid data types for its input 
arguments and its output. 

The fitness function evaluates the quality of an individual 
(rule). This means that a number of records of the database 
are classified by the rule under evaluation and its predictive 
performance is measured. The fitness function used in this 
paper follows the work of [2]. The fitness function can be 
thought of as consisting of two parts. First, it combines two 
indicators that are commonplace in the medical domain, 
namely the sensitivity (Se) and the specificity (Sp), defined 
as follows: 

( )fntptpSe +=   (1) 

( )fptntnSp +=   (2),  

where tp, fp, tn and fn are the number of true positives, false 

positives, true negatives and false negatives, respectively – 
see [8]. The second part of the fitness function is a term that 
enforce GP to produce rules as short as possible. The 
motivation is that the comprehensibility of a rule is 
inversely proportional to its size. Hence, we define a 
measure of simplicity (Sy) of a rule as follows. 
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Where numnodes is the current number of nodes (functions 
and terminals) of an individual, and maxnodes is a 
parameter of the GP regarding the maximum allowed size of 
the tree. This equation produces its maximum value of 1 
when a rule is so simple that it contains just one term. This 
equation produces its minimum value of 0.5 when the 
number of nodes equals the maximum allowed. The reason 
to set the lower limit to 0.5 is to penalize large-sized 
individuals without forcing them to disappear. This is 
especially important in the early generations of a run, when 
most individuals will have very low predictive accuracy, but 
can carry good genetic material capable of being improved 
by later genetic operators. 

Finally, the fitness function used by our GP is defined as the 
product of the indicators of predictive accuracy and 
simplicity, i.e.: 
 

SySpSefitness **=           (4) 

Computational results   

Three experiments were done using databases of medical 
domains: chest pain, dermatology and Ljubljana breast 
cancer. The two latter can be found in the Internet [1] and 
the first was used in [10][2]. The chest pain database has 12 
classes, corresponding to diseases commonly related to 
chest pain, and has 138 records with 161 attributes (binary 
and categorical) each. Attributes are related to the 
characteristics of chest pain, including symptoms, signals, 
clinical history and laboratory tests. The dermatology 
database [3] has 6 classes related to dermatological 
pathologies, 366 records and 34 attributes. All attributes 
have values mapped in the range [0..3], except age (integer, 
in years) and family history (0,1). The breast cancer 
database is related to the recurrence of breast cancer of 
patients that undergo surgery. It has 286 records, 9 
attributes, and two classes. 

In all three experiments, the database was randomly divided 
into five partitions. Then a well-known 5-fold cross-
validation procedure was performed. In each iteration of the 
cross-validation procedure one of the 5 partitions was used 
as the test set and the other 4 partitions were used as the 
training set. The predictive accuracy results reported below 
are an average over all five iterations of the cross-validation 
procedure.  



For each experiment (data set), GP was run once for each 
class. Once all runs of GP for a given data set were 
completed, all the rules found by GP in that experiment 
were grouped into a rule set, i.e. the set of all discovered 
rules (for all classes) for that data set. The quality of that 
rule set was evaluated according to two criteria: the 
predictive accuracy of the rule set and the comprehensibility 
of the rules. 

The predictive accuracy of a rule set was measured by its 
classification accuracy on the test set, as usual. This seems 
to be the most widely used measure of predictive accuracy 
in the literature, in spite of its drawbacks [8]. The results 
obtained for the three databases are shown in Table 2. The 
second column shows the results for the constrained-syntax 
genetic programming (GP) system proposed in this paper. 
The numbers after the “±” symbol are the standard 
deviations of the corresponding accuracy rates. The third 
column shows the results for the genetic algorithm (GA) 
proposed by [5]. In their paper the authors report results for 
the Dermatology and Breast Cancer data sets, but not for 
the Chest Pain data set. The proposed GP obtained accuracy 
rates somewhat better than the GA in both the Dermatology 
and the Breast Cancer data sets.  

The fourth column of Table 2 shows the results for C4.5 
[11], a very well-known, advanced decision-tree algorithm 
often used in machine learning and data mining. The results 
for C4.5 were also obtained by a 5-fold cross-validation 
procedure. The proposed GP obtained accuracy rates 
considerably better than C4.5 in the Chest Pain and 
Dermatology data sets. The two algorithms obtained similar 
accuracy rates in the Breast Cancer data set. Overall, the 
rule set discovered by the GP was simpler (shorter) than the 
rule sets discovered by both the above-mentioned GA and 
C4.5.  

Table 2: Classification accuracy rate (%) for three medical 
data sets. 

Data set Proposed GP GA C4.5 
Chest pain 80,31 ± 7,80 N/A 73.18 

Dermatology 96,64 ± 2,27 94.96 89.12 
Breast cancer 71,79 ± 9,36 67.39 71.38 

 

 

Conclusions   

In this paper we have proposed a constrained-syntax genetic 
programming (GP) system for discovering high-level, 
comprehensible classification rules. The proposed GP was 
compared with a genetic algorithm (GA) and with C4.5. 
Results obtained so far are very promising. Overall the GP 
discovered rule sets that are more accurate and simpler than 
the rule sets discovered by both the GA and C4.5. In the 
future we intend to apply the proposed GP to other data 
sets, to further validate the results reported in this paper.  
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