An Ant Colony Based System for Data Mining:
Applicationsto Medical Data

Rafael S. Parpinelli*

! CEFET-PR, CPGEI
Av. Sete de Setembro, 3165
Curitiba - PR, 80230-901
Brazil
rsparpin@cpgel .cefetpr.br
hslopes@cpge .cefetpr.br

Abstract

This work describes an algorithm for rule
discovery in databases called AntMiner. The
objedive of the algorithm is the extraction of
clasdgfication rules to be applied to unseen data
as a dedsion aid. The dgorithm used to
discover such rulesis inspired in the behavior
of ared ant colony, as well as sme oncepts
of information theory and data mining.
AntMiner was applied to medical databases to
obtain clasgfication rules.

1INTRODUCTION

Recently, there has been a growing interest in the data
mining areg where the oljedive is the discovery of
knowledge that is not only corred, but also
comprehensible and even surprising to the user [Fayyad
et a, 19%; Freitas and Lavington, 1998]. Therefore, the
user can quickly understand the results of the system
and combine them with hisher own knowledge of the
problem in order to support a dedsion-making process.

When using data mining techniques, the discovered
knowledge is frequently represented in the form of IF
<condtions> THEN <class> rules. The <conditions>
part is the antecedent of the rule and is a logical
combination of the predicting attributes (for instance
terml AND term2 AND..). Each term is a triple
<attribute, operator, value>, where the dement
operator isarelational operator. In thiswork it isamed
to mine data only with categorical attributes, therefore
the dement operator of the triple will be ‘=". The
<class> (consequent) contains the predicted class for
the @se whose attributes satisfy the <conditions> part
of therule.

There ae several tasks in data mining and the most
usua in the literature is classfication. The classfication
task condsts in asociating an objed/case to a class

Heitor S. Lopes

Alex A. Freitas’

2 PUC-PR, PFGIA-CCET
Rua Imaculada Concecao, 1155
Curitiba - PR, 80215-901
Brazil
aex@ppga.pucpr.br
http://www.ppga.pucpr.br/~alex

(among a predefined set of clases) based on the
objed/case s attributes.

To the best of our knowledge, the applicaion of
artificiad Ant Colony Systems (ACS) [Dorigo et al,
1994 as atod for clasdfication-rule discovery is gill
unexplored and, probably, this is the first work to
explore such approach. ACS use simple agents
(artificial ants) that, when working together, cooperate
with each other al owing the solution of problems with
very large seach spaces. In the @ntext of rule
discovery, thisis achieved dueto its ability to perform a
flexible search over all possble logic combinations of
the predicting attributes. Based on this feature of
ACS's, we believe that they can be very promising for
the data mining task addressed here. The only previous
work on ant-based rule discovery that we ae aware of
is[Cordon et al, 2000]. However, in this work the rules
are fuzzy rules, used in a fuzzy control system, rather
than clasdfication rulesin the sense of data mining.

2 SOCIAL INSECTSAND REAL ANT
SYSTEMS

Social inseds like ants, bees and termites work by
themselves in their simple tasks, independently of
others members of the wlony. However, when they act
as a ommunity, they are able to solve @mplex
problems emerging in ther daily lives, by means of
mutual cogperation. This emergent behavior of a group
of socia inseds is known as “swarm intelligencée’
[Bonabeau et al, 199].

Ants are able to find the shortest path between a
food source and the nest without the aid of visua
information, and aso to adapt to a changing
environment [Dorigo et a, 1994. It was found that the
way ants communicéae with each other to find the right
way to follow is based on pheromone' trails. While ants
move, they drop a cetain amount of pheromone on the

! Pheromone is a chemical substance used as the communication
media anong individual s of the same species.

floor, leaving behind a trail of this sibstancethat can be
followed by other ants. The more aits follow a
pheromonetrail, the more atractive the trail becomes to
be followed in the nea future. This is a kind of
autocatalytic behavior, described by a loop of positive
feedback, where the probability of an ant choosing a
path increases diredly with the number of ants that
have passd in the path before.

Finding the shortest path around an obstacle is an
interesting emerging feature of the above-described
autocatalytic behavior. In this case, an interaction
between the obstacle shape and the distributed behavior
of the ants takes place[Bonabeau et al, 1999. The basic
ideaisillugrated in figure 1.

Nest Nest Nest
i* i} 1,
¥

z% Mo H ’g%& %’%’i%
+1 : L xlﬂ%¥ : g :H?#
#f e Lt igr
‘iag E " E "
Food Food Food

Figure 1. Antsfinding the shortest path around an
obstacle

Ants move roughly at the same speal and drop
pheromone at the same rate. However, to go around the
longer path an ant takes more time than going by the
shorter path. This makes the pheromone to be
accumulated faster in the shorter path than in the longer
one. Besides, ants prefer to follow paths with more
pheromone, leading to a faster convergence to the
shorter path.

3 ARTIFICIAL ANT COLONY SYSTEMS

An artificia Ant Colony System is an algorithm based
on agents that smulate the natural behavior of ants,
developing mechanisms of cooperation and leaning.
The ACS was first proposed by [Dorigo et a, 199%] to
be applied to combinatorial optimization. This new
heurigtics has been shown to be robust and versatil e for
different problems. In addition, ACS is a population-
based heuristics that enables the exploration of the
positive fealback between agents as a seach
medanism.

There ae some differences between red ants and
ACS. artificial ants have memory and ae not
completdy blind. Also, in the environment where they
exist, timeisdiscrete.

On the other hand, besides the pheromone-based
communication medium, an ACS has another
characteristic found in red ants: an artificial ant has a
probabili stic preference for paths with a larger amount
of pheromone. Consequently, shorter paths tend to have
ahigh rate of growth in the amount of pheromone.

Esentialy, an ACS algorithm performs a logp
applying two baesic procedures:

» A procedure spedfying how ants congtruct or modify
a solution for the problem in hand;

* A procedure for updating the pheromone trail .

The onstruction or modification of a solution is
performed in a probabili stic way. The probability of
adding a new item to the solution under construction is,
in turn, a function of a problem-dependent heuristic (1)
and the amount of pheromone (1) previously deposited
in this trail. The pheromone trails are updated
considering the evaporation rate and the quality of the
current solution. Therefore, a practical implementation
of an ACS includes the foll owing definiti ons [Bonabeau
et al, 1999:

* An appropriate representation for the problem with
which ants can incrementally construct or modify
solutions, by means of a probabilistic trandgtion
rule based on the amount of pheromone in the trail
and on alocal heuridtic;

* A heurigtic function (1) that measures the quality of
the items that can be added to the arrent partia
solution;

* A method to enforce the mnstruction of valid
solutions (in thered-world seach space);

* A rulethat spedfies how a pheromonetrail (1) should
be updated;

* A probabili stic transition rule that uses the current
value of the heurigtic function (1) and the current
amount of pheromone in thetrail (7).

4 ANTMINER —THE PROPOSED ACS
FOR CLASSFICATION RULE
DISCOVERY

Thissedion discussesin detail the proposed system and
it is divided into seven parts. AntMiner overview,
heurigic function, pheromone updating, rule
congtruction, rule pruning, classfication of unseen
cases and system parameters.

4.1 ANTMINER OVERVIEW

Recall that each ant can be regarded as an agent that
incrementally constructsmodifies a solution for the
target problem. In our case the target problem is the
discovery of clasdfication rules. As mentioned before,
the rules are epres=d in the form: IF <condtions>
THEN <class>.

The <conditions> part (antecalent) of the rule
contains alogical combination of predictor attributes, in
the form: terml AND term2 AND Eachtemisa
triple <attribute, operator, value>. The arrent version
of AntMiner copes only with categorical attributes, so
that the operator element in the triple is aways "=".
Continuous (real-valued) attributes are discretized as a
preprocessng step. The <class> part (consequent) of
therule containsthe dass predicted for cases (objeds or

records) whose predictor
<conditions> part of therule.

attributes stisfy the

Each ant starts with a rule with no term in its
antecalent (empty rule), and adds one term at a time to
its current partial rule. The arrent partia rule
constructed by an ant corresponds to the current partial
path followed by that ant. Similarly, the choice of a
term to be added to the current partial rule @rresponds
to the choice of diredion for which the current path will
be extended, among all the possble diredions (all terms
that could be added to the arrent partial rule).

The doice of a term (attribute-value pair) to be
added depends on bath a problem-dependent heuristic
function and on the amount of pheromone assciated
with each term, as will be discussd in detail in
subsedions 4.2 and 4.3, respedively.

An ant kegs adding terms one-at-a-time to its
current partial rule until the ant is unable to continue
congtructing its rule. This situation can arise in two
cases (described in more detail in subsedion 4.4),
namely: (a) when whichever term which could be added
to the rule would make the rule cver a number of cases
smnaler than a user-spedfied threshold, called
Min_cases per_rule (minimum number of cases
covered per rule); (b) when all attributes have already
been used by the ant, so that there ae no more atributes
to ke added to the rule antecedent.

When one of these two stopping criteria is stisfied
the ant has built arule (i.e. it has completed its path),
and, in principle, we ould use the discovered rule for
clasdfication. In practice however, it is desirable to
prune the discovered rules in a post-processng step, to
remove irrelevant terms that might have been unduy
included in the rule. These irrelevant terms may have
been included in the rule due to stochastic variations in
the term seledion procedure and/or due to the use of a
shortsighted, local heuristic function - which considers
only oneattribute-at-artime, ignoring attribute
interactions. The pruning method used in Ant-Miner
will be described in subsedion 4.5.

When an ant completes its rule and the anount of
pheromonein each trail is updated, another ants gtart to
construct its rule, using the new amournts of pheromone
to guideits ®ach. This processis repeated for at most
a predefined number of ants. This number is gedfied
as a parameter of the system, cdled No_d arns
However, this iterative process can be interrupted
earlier, when the aurrent ant has constructed a rule that
is exactly the same as the rule onstructed by the
previous No_Rules Converg - 1 ants.
No_Rules Converg (number of rules used to test
convergence of the ants) is also a system parameter.
This second stopping criterion deteds that the ants have
already converged to the same @nstructed rule, which
is equivalent to converging to the same path in red Ant
Colony Systems.

The best rule among the rules constructed by all ants
is considered a discovered rule. The other rules are
discarded. This completes oneiteration of the system.

Then all cases corredly covered by the discovered
rule ae removed from the training set, and another
iteration is started. Hence the AntMiner agorithm is
called again to find a rule in the reduced training set.
This process is repeated for as many iterations as
necessary to find rules covering amost all cases of the
training set. More predsdy, the above process is
repeated wntil the number of uncovered cases in the
training set is less than a predefined threshold, called
Max_uncovered_cases (maximum number of uncovered
cases in thetraining set).

A summarized description of the above-discussed
iterative processis shown in the algorithm of Figure 2.

TrainingSet = {al training cases};
DiscoveredRuleList = []; /* rule ligt is initidlized with an
empty list */
WHILE (TrainingSet = Max_Uncovered_Cases)
i =1; /* antindex */
No_Ants Converg = 1; /* convergence test index */
Initialize dl trails with the same amount of pheromone;
REPEAT
Ant; starts with an empty rule axd incrementaly
constructs a dassificaion rule R;, by adding ane term at
atimeto the current rule;
Prunerule R;;
Update the pheromone of &l trals, by increasing
pheromone in the trail foll owed by Ant; (in proportion to
the quality of R;) and decreasing pheromone in the other
trails (simulating pheromone evaporation);
IF (Riisequd to R _;) /* update mnvergence test */
THEN No_Ants_Converge = No_Ants_Converge + 1;
ELSE No_Ants Converge =1,
END IF
i=i+1;
UNTIL (i = No_of_Ants) OR
(No_Ants_Converg = No_Rules_Converg)
Choose the best rule Rpes @among al rules R; constructed by
al the ants;
Add rule Rye to DiscoveredRuleList;
TrainingSet = TrainingSet - { set of cases correctly covered
DY Roest} ;
END WHILE

Figure 2: Overview of AntMiner

When the number of cases l€eft in the training set is
less than Max_uncovered cases the seach for rules
stops. At this point the system has discovered several
rules. The discovered rules are stored in an ordered rule
list (in order of discovery), which will be used to
clasdfy new cases, unseen during training. The system
also adds a default rule to the last position of the rule
list. The default rule has an empty antecalent (i.e. no
condition) and has a mnsequent predicting the majority
classin the set of training cases that are not covered by
any rule. This default rule is automaticdly applied if
none of the previous rulesin the list cover a new case to
be dassfied.

Oncetherule list is complete, the system is finally
ready to clasgfy anew test case unseen during training.
In order to do this the system tries to apply the
discovered rules, in order. Thefirst rule that covers the
new case is applied —i.e. the @se is assgned the dass
predicted by that rule€’ s consequent.

4.2 HEURISTIC FUNCTION

The heuristic function (n) is based on the amount of
information (measured by the entropy?) assciated with
the dtribute i with value j, i.e, (i) [Wess and
Kulikowski, 1991]. The amount of information is given
by equation 1:

k HfreqTIJ H

HfreqTIJ
W—1D Tr. e coow

infoTj; =
D j | L

|02

where:
* kisthe number of classs in the dataset;

* |T;j| isthetotal number of cases in the data partition Tj;
(partition that contains the ases where the attribute
i isequal to the valuej);

« freq T;" represents the number of cases in Tj; that
bel ong to classw.

The larger the entropy (infoT;;), meaning classes
more evenly distributed, the smadler the predictive
power of the attribute-value pair (ilj).

In the case that attribute i with valuej (i]j) does not
appea in any case of the partition Tj;, that is, the value |
is not present in the training set, then we set infoT;; =
log(number of clases), which is the maximum
entropy. If the attributei with value j identifies only one
classin the partition Tj;, then infoT;; = 0, which is the
minimum entropy. The larger the value of infoT;; (0 <
infoT;; < logy(number of classs)), the smdler the
probability that the ant chose attribute i with value j.
Therefore, the heuristic aiterion is given by equation 2:

logo (k) - infoTij
a b

iz % Iogz(k) - infoTij

nij = (2]

where;
 aisthetotal number of attributes;

* b isthe number of values in the domain of attributei.

4.3 PHEROMONE UPDATING

Initialy, for all attributesi and their possble values j, a
given initiadl amount of pheromone is deposited in the
respedive position. This initial normalized amount is
proportional to the total number of values of all
attributes, and is given by equation 3:

2 The entropy models the degree of ‘disorganization’ of the training
cases cons dering the distribution of the dassesto be predicted.

4l

 aisthetotal number of attributes;

Tij (t=0) = 3]

where;

* b is the number of possible values that can be taken
by attributei.

At the completion of a rule the amount of
pheromone in the i (attributes i | values) that
congtitute the rule must be updated. This is
acoomplished with a rule quality criterion given by the
product sensitivity [7 spedficity [Lopes et al, 199§.
Equation 4 shows the rule quality criterion in detail.
The larger the value of Q, the higher the quality of the
rue(0<Q<1).

TruePos TrueNeg
Q=() L) [4]
TruePost FalseNeg FalsePos TrueNeg

where;

» TruePos (true positives) is the number of cases
covered by therule that have the dass predicted by
therule;

* FalsePos (false positives) is the number of cases
covered by the rule that have a classdifferent from
the dasspredicted by therule;

* FalseNeg (false negatives) isthe number of cases that
are not covered by the rule but that have the dass
predicted by therule

* TrueNeg (true negatives) is the number of cases that
are not covered by the rule and do not have the
classpredicted by therule.

The pheromone updating is performed as follows. for
al termsi|j belonging to the rule aeded by the ant, the
amouwnt of pheromone is increased proportionaly to Q,
acoording to equation 5. The factor that represents the
pheromone evaporation for the terms i|j that do not
belong to therule is obtained by normdizing the overall
distribution of pheromone (given by equation 5) by the
sum of all .

Tj t+D =7 () +7;) 0QU i | j U to therule [5]

4.4 RULE CONSTRUCTION

The probeability P;; of an ant chooses a given ifj not yet
used inits current rule is given by equation 6. Note that
ants build rules using two memories. memories for the
attributesjvalues (i|j) and memories for the attributes (i).
These memories contain the attribute-value pair ifj and
the dtribute i that was arealy used in the partia rule
built by the ant.

. t .
R = Tij (O) 75 (6]

Mo
M_o&

—

where:

* aisthetotal number of attributes;

* b isthetotal number of valueson i domain;
| aretheattributesi not yet used by the ant.

These memories are updated according to the
foll owing conditions:

 If the attribute i was not yet used by the at, its
memory valueis zero, being freeto be dosen;

« If theinsertion of theij in the arrent rule of the ant
would yield a rule cvering a number of cases
smnaler than a gven threshold (called
Min_cases per_rule), then this i cannot be
included in the rule. Thus, the memory value for
thisi|j isadjusted to -1, aflag indicating that thisi|j
will not be chosen anymore.

This term-inclusion procedure is repeated until al
attributes are analyzed.

The definition of which classthe rule generated by
the at predicts is given by the class of the majority
(positive dasg of the ases covered by therule.

At the end d each iteration, the best rule generated
so far by the ants (the rule with the highest Q) is kept.
Then, all trail sarereinitialized with the same amount of
pheromone and a new iteration takes place (see Figure
2).

The seach for better rules is dopped in two
situations: either when the training set has a number of
cases sndler than a spedfied threshold
(Max_uncovered_cases), or when an ant cannot proceel
constructing the rule. The latter condition occurs when
any new attribute value to be inserted in the rule would
cause the rule to cover a number of cases snaller than
Min_cases per_rule.

4.5 RULE PRUNING

A pruning procedure is used to reduce the number of
terms of arule in order to increase its quality (measured
by equation 4). This procedure induces the discovery of
more comprehensible (smaller) rules and helps to avoid
the overfitting of rulesto the training dataset.

An ant can build a rule as long as the number of
partitionsthat can be done in the training set, respeding
the threshold Min_cases per_rule. After an ant builds a
rule, the pruning procedure takes place by iteratively
removing ane andition at time. More predsely at each
iteration the procedure cmputes, for each condition
currently in the rule, what would be the value of the
quality Q of the rule if that condition was removed.
(This might require to modify the dasspredicted by the

rule, since this is always the majority class among all
cases covered by the rule antecedent.) After doing this
for all conditions, the @ndition whose removal most
improves the rule quality Q is effedively removed from
the rule, and another iteration of the rule pruning
procedure starts. This procedure is repeated until one
can not improve the quality of therule.

4.6 USING THE DISCOVERED RULES FOR
CLASSFYING NEW CASES

To classfy a new test case, unseen during training, we
try to apply the discovered rules, in the order they were
discovered. The first rule that covers a new case is
applied - i.e. the @se is assgned the classpredicted by
that rul€'s consequent.

It is posdgble that no rule in the list of discovered
rules covers the new case. In this stuation the new case
is clasdfied by the default rule, which simply predicts
the majority classin the set of training examples that
are not covered by any discovered rule.

4.7 SYSTEM PARAMETERS

Our Ant Colony System has the foll owing four user-

defined parameters:

e Number of Ants (No_of ants) - This is aso the
maximum number of complete a@ndidate rules
constructed during a single iteration of the system,
since ech ant constructs a single rule (see Figure
2). In each iteration, the best candidate rule
constructed in that iteration is considered a
discovered rule. Note that the larger the
No_d_ants, the more candidate rules are evaluated
per iteration, but the slower the system is;

e Mimimum number of cases per rule
(Min_cases per_rule) - Each rule must cover at
least Min_cases per_rule, to enforce at least a
cetain degreeof generality in the discovered rules.
Thishelps avoiding owerfitting to the training data;

* Maximum number of uncovered cases in the training
set (Max_uncovered_cases) - The processof rule
discovery is iteratively performed until the number
of training cases that are not covered by any
discovered rule is smaller than this threshold (see
Figure 2);

* Number of rules used to test convergence of the ants
(No_Rules Converg) - If the arrent ant has
constructed a rule that is exactly the same as the
rule @nstructed by the previous
No _Rules Converg — 1 ants, then the system
concludes that the ants have mnverged to a single
rule (path). The aurent iteration is therefore
stopped, and ancther iteration is darted (seeFigure
2).

In all the experiments reported in this paper these
parameters were set as foll ows:

* No_of ants=300Q

* Min_cases per_rule= 10;
* Max_uncovered cases= 10;
* No_Rules Converg = 10.

We have made no serious attempt to gptimize the
setting of these parameters. Such an optimization
should be tried in future reseach. It is interesting to
notice that even the above non-optimized parameters
setting has produced quite goad results, as will be seen
in the next sedion. In addition, the fact that Ant-Miner
parameters were not optimized for the data sets used in
our experiments makes the mmparison with C4.5
(reported in the next sedion) fair, since we used the
default, non-optimized parameters for C4.5 aswell. (In
passng we mention that unfortunately this kind o fair
comparison is not very often seen in the literature
Authors often report results comparing a parameter-
optimized version of their algorithm with a non-
parameter-optimized version of another algorithm. This
makes the amparison lessfair.)

SDATA SETSUSED IN THE
EXPERIMENTS

Experiments were done using four public-domain
datasets, obtained from the Machine Learning
Repository [Aha and Murphy, 1994.

For al datasets, the continuous attributes were
discretized usng the C4.5-Disc dgorithm [Kohavi and
Sahami, 1996]. For each continuous attribute to be
discretized, this classdriven discretization agorithm
consists of using the wel-known C4.5 agorithm
[Quinlan, 1993] for generating a dedsion tree where:
(a) internal nodes are tests on the values of the dtribute
being discretized; and (b) leaf nodes are dasses. Each
leaf node of the generated dedsion treeis asociated
with an interval of values of the dtribute being
discretized (defined by the path from the roat node to
that leaf node). Each of these generated intervals is
considered a discrete value for the attribute being
discretized. (Seethe abowve referencefor detail s)

The AntMine system was tested using the
foll owing datasets:

* Ljubljana breast cancer: this database has 282 cases,
two clases and nine predicting attributes (al
categorical);

» Wisconsin breast cancer: This database has 683 cases,
two classes and nine predicting atributes. All
predicting attributes are @ntinuous (in the range of
1to 10) and were discretized;

» Hepatitis: This database has 155 cases, two classes
and 19 predicting attributes (six of them were
continuous, and so were discretized);

» Dermatology: This database has 358 cases, Sx clases
and 34 predicting attributes (only one is continuous
—age, and so was discretized).

6 COMPUTATIONAL RESULTS

Among the several criteria that could be used to
evaluate the predictive accuracy of discovered rules, the
crossvalidation accuracy rate® was used. Although this
measure is computationally expensive, it gives a wide
exploration of the characteristics of the @ses in the
dataset [Weissand Kulikowski, 1991]. For al datasets,
a 10fold cross validation (k=10) was used. In this
procedure, all cases are used only once as testing and
(k-1) times as training. The final accuracy rateis smply
the average of the acauracy rate of the k iterations. All
the k data partiti ons are randomly generated considering
all available @ses.

Table 1 summarizes the results obtained by the
proposed AntMiner algorithm in the four datasets. The
table shows the acauracy rate, the number of rules
found and the number of terms (the shown values are
the average values of the crossvalidation procedure
foll owed by the mrresponding standard deviation).

Table 1: Results With The AntMiner Algorithm

Predictive Number of Number of

Data Sets Accur acy Rules Conditions

LjubljanaBreast | 7514004600 | 5204087 | 880+1.89
Cancer

Wisconsin Breast | o5 4704 162 | 560+080 | 1250+ 2.84
Cancer

Hepatitis 88.75%+ 6.73 | 2.70£046 | 750201

Dermatology | 84.21%%6.34 | 6.00%0.00 | 79.00+ 3.46

The obtained results were mmpared with other
machine leaning methods found in the literature, for
the same datasets. Table 2 compares the accuracy rate
(on the test set) of AntMiner with the accuracy rate of
the well -known CA4.5 algorithm [Quinlan, 1993 using a
10-fold crossvalidation procedure for bath algorithms.

Table 2: AntMiner Versus C4.5

Acaur acy Number of | Number of
Rules Conditions
LjubljanaBreast Cancer Data Set
AntClass 75.13% +6.00 5.20+£0.87 8.80+1.89
C45 7334%+ 3.21 6.2+4.2 12.8+9.83
Wisconsin Breast Cancer Data Set
AntClass 9547% +1.62 5.60+£0.80 [1250+2.84
C45 95.02% £ 0.31 111+145 [441+748
Hepatitis Data Set
AntClass 88.75% +6.73 2.70+£0.46 750+ 2.01
C45 85.96% + 1.07 4.4+0.93 85+3.04
Dermatology Data Set
AntClass 84.21% + 6.34 6.00£0.00 [79.00+ 3.46
C45 89.05% +0.62 232+1.99 [91.7+10.64

Furthermore, Table 3 compares AntMiner with an
evolutionary algorithm for rule discovery called ESIA -
Extended Genetic Rule Induction Algorithm [Liu and
Kwok, 2004, on the Wisconsin breast cancer dataset.

3 Accuragy rate is defined as the quotient between the number of test
cases correctly classfied and the total number of test cases.

Table 3: Comparison between AntMiner and ESIA
(Wisconsin breast cancer data set)

Accur acy Number of Numk_)gr of

Rules Conditions

AntClass 95.47% +1.62 | 5.60+0.80 | 1250+2.84
ESIA 94.71% +0.04 239 -

7 CONCLUSIONS

We have described an Ant Colony System called
AntMiner for the discovery of clasdfication rules in
databases. We have also shown results indicating that
AntMiner had a good classfication performance on the
four datasets used in our experiments. These results
also show that the proposed algorithm is able to achieve
both goad predictive accuracy and a reduced number of
rules a the same time. This facilitates the practical use
of the system, sinceit usually generates comprehensible
rules. The main drawback is gill its computationa cost,
especialy when the search space (number of predicting
attributes) is too large. Notwithstanding the algorithm
proposed here is very promising, and more experiments
will be done in the future, as wel as other
improvements.

REFERENCES

D.W. Aha aad P.M. Murphy (1994. UCI Repository of
machine leaning databases. [http://www.ics.
uci.edu/~mlean/MLRepository.html]. Irvine, CA:
University of California, Department of Information
and Computer Science

E. Bonabeau, M. Dorigo, and G. Theraulaz (1999).
Swvarm Intelligence From Natural to Artificial
Systems. New Y ork: Oxford University Press

O. Corddn, J. Casillas, and F. Herrera (2000. Leaning
Fuzzy Rules Using Ant Colony Optimization. Proc.
ANTS 2000 — From Ant Colonies to Artificial Ants:
Semnd Internationd Workshaop on Ant Algorithms,
pp. 13-21.

M. Dorigo, A. Colorni, and V. Maniezzo (1996). The
ant system: optimization by a colony of cooperating
agents. |[EEE Transactions on Systems, Man, and
Cybernetics-Part B, val. 26, no 1, pp. 1-13.

U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth
(1996. From data mining to knowledge discovery:
an overview. In: UM. Fayyad, G. Piatetsky-
Shapiro, P. Smyth and R. Uthurusamy (Eds)
Advances in KnoMedge Discovery & Data Mining,
1-34. Cambridge: AAAI/MIT.

A. A. Freitasand S. H. Lavington (1998. Mining Very
Large Databases with Parallel Processng. London:
Kluwer.

R. Kohavi and M. Sahami (1996. Error-based and
entropy-based dscretization of continuous features.
Proc. 2" Int. Conf. Knomedge Discovery and Data
Mining, pp. 114-119.

J. J. Liuand J. T. Kwok (2000. An Extended genetic
rule induction algorithm. In Proc. CEC'2000, pp.
458463

H. S. Lopes, M. S. Coutinho, and W. C. Lima (1998).
An Evolutionary approach to simulate @gnitive
Feeadback leaning in medical domain. In Genetic
algorithms and Fuzz Logic Systems. Soft
Computing Perspedives, Singapore: World
Scientific, pp. 193-207.

J. R Quinlan (1993). C4.5: Programs for Machine
Learning. San Francisco: Morgan Kaufmann.

S. M. Weissand C. A. Kulikowski (1991). Computer
Systems that Learn - Clasdfication and Prediction
Methods from Statistics, Neural Nets, Machine
Learning, and Expert Systems, San Francisco:
Morgan Kaufmann.

