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Abstract — In this work, we aimed to detect the non-averaged MRD of the mu rhythm from the background
activity of the EEG. The MRD was produced in the contralateral sensorimotor cortex by means of a movement
of the right hand. Thirteen volunteefs took part in the experiments. They were all right-handed and had ages
between 22 and 37 years old. The volunteers were asked to do one of two tasks: (a) just one movement by trial;
(b) repetition of movements. The EEG signal was taken in the scalp near to C3 lead. The signal was amplified,
sampled and digitally filtered off-line. The time response of the mu band was computed with the FFT. Windows
of the time response was used as predicates in the training and testing of a neural network classifier.
Representative samples of MRD and background activity was taken for each class. The neural networks used
were LVQ and they were trained by session, by task and by volunteer. The performance was measured by the
geometric mean of the sensibility and specificity indexes, calculated for every training epoch over test data. The
best detection performance was 88% for the single movement task and 78% for repetition of movements, with an
average of 66% for both tasks. For the LVQ, only 3 subclasses for every class were sufficient, and a constant
learning rate of 0.01 with the number of training epochs calculated by the relation of 250 x (total number of
subclasses); was enough to get the best results. .
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1. Introduction

Movements of limbs produce changes in
the electroencephalographic signal, notably in the
sensorimotor cortex contralateral to the limb. These
changes are: known as MRD (movement-related
desychronization) and can be detected in the mu
band (8-12 Hz) (NASHMI et al, 1994;
FLOTZINGER et al., 1992; FLOTZINGER et al.,
1994; - PFURTSHELLER et al, 1994,
PFURTSHELLER et al., 1996).

‘ The objective of this work is to develop a
classifier system capable of identify the MRD from
the background activity of the EEG.

Experiments were conducted to evaluate
two different ways of producing MRDs, using for
such, two tasks that include the movement of the
right hand. The first task is a single movement of
the wrist, upward and downward. The second task
was the repetition of the same movement.

The work also aims to evaluate the
performance of a Linear Vector Quantization
(LVQ) neural network as a classifier.

The technique used here will be further
applied to implement a Brain-Computer Interface
(BCI) (PILLA JUNIOR, 1999).
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2, Methodology

The experimental setup used for collecting
signals from volunteers is shown in figure 1.

The EEG was collected from the scalp
using electrodes near the C3 lead (according to the
International Federation 10/20 system). The first
electrode (C3a) was put 25 mm ahead of C3 and the
second (C3p), the same distance before. A-
differential amplifier (gain 30,000 V/V) also filters
the input EEG in the band 8-100 Hz and the
sampling rate was 1,280 Hz.

In a given signal collection session, the
same task was executed in all trials (single
movement or repetition). At least 50 valid trials,
during 20 sec each, were collected from each
volunteer. Valid trials were those when no artifacts
were visually detected. After the session, all

" samples were again inspected to eliminate those

with undesired artifacts.

In the screen of a personal computer a
sequence of events for each task was presented in
order to guide the volunteer. For the first task
(single movement), an arrow was presented in the
screen at t=6s to indicate that the movement had to
be done immediately. For the second task an arrow
was presented in the screen in t=11s to tell the
volunteer that he/she had to start the movements.
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This arrow was presented again 8 times in intervals
of 1s. All trials had an overall duration of 20 s.

All volunteers participate of sessions were
both tasks were done.

PC

Figure 1 — Experimental setup

In all sessions, the volunteers were sit
down comfortably in a reclined chair, lights were
turned off and the room temperature was lower than
25 °C. Volunteers should stay mentally and
physically relaxed but waked up, staring at the
computer screen.

The movement of the hand was upward
and downward turning around the wrist. The task
should be completed between 0.4 and 0.9 seconds.
(helped by visual timing in the screen). All
volunteers were submitted to a previous training
session in order to get familiarized with the
procedure.

Thirteen volunteers (12 male and 1 female)
took part in the experiments. They were all right-
handed and had ages between 22 and 37 years old.

3. Signal processing

Signals collected from the volunteers were
processed offline. Initially, the raw signal was
digitally filtered by a low-pass 128 Hz Hanning
window FIR filter of order 128. After, sampled
signal was decimated, reducing the initial sampling
rate (1280 Hz) to 256 Hz. Next, the mu band was
extracted using a digital band-pass FIR filter, order
64, in the range 7-13 Hz. Using this filtered signal,
the time response of the mu band was calculated at
intervals of 0.125 s (32 samples) using a window of
1 s (256 samples). For every window, the FFT was
computed (BOASHAH, 1992). Thus, the k-th time
response y(k) of the mu band is defined as the
average of the absolute value of the spectrum
components between 8-12 Hz, taken for the k-th
window of a given trial.
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In this way, the time response of the mu
band was computed for every trial of each session
with the volunteers.

In the figure 2 it is shown the time
response of the mu band taken as the average by
session for two different volunteers. In this figure,
it is seen the presence of a valley between t~6s and
t~8s (for single movement task) for both
volunteers. This valley corresponds to the presence
of the MRD of the mu band associated to the
movement. In the sessions of multiple movements,
for the first volunteer, the valley can be seen after
t=11s and persists until the last movement in t~19s.
For the second volunteer, the MRD disappeared
soon, probably because he was too relaxed during
that session, not being capable of repeating the
movements in synchrony.
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Figure 2: Averaged time response of the mu band.
Top: volunteer #1; bottom: volunteer #2

4. Neural network training

Data for training and testing the classifier
were constituted by vectors of 9 samples taken as
windows from the time response (non-averaged) of
the mu band. The data set was divided into two
classes, "with movement” (WM) and "background
activity" (BA), where the first corresponds to the
windows where the MRD was present.
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For the single movement task, the
windows for the WM class were taken between
t=6.5s and t=7.5s and, for the BA class, after t=10s.
The significance level of p>>5% was used as
criterion to select the windows for the BA class. It
was calculated using variance analysis (ANOVA)
using the interval t=10s to t=20s as reference.

A: proportion of one window of WM to
three of BA: was used for every trial in the session
for this task for the training / test set. .

For the multiple movements task, the WM
class windows were taken from the time response
after t=11s;. using the significance criteria of p<5%.
The windows for the BA class were taken in. the
interval t=2s: to t=10s using p>>5%. In both cases,
the reference was the interval with background
activity, i.e.,.between t=2s and t=10s. A proportion
of 3 classess WM to 3 classes BM was used for the
trials in this task for the training / test set.

The classifier used was a Kohonen
Learning Vector Quantization (LVQ type 2) neural
network (KOHONEN, 1997), as shown in figure 3.
This classifier is based on clustering with
supervised learning. It uses a vector quantization
architecture to approximate the optimal decision
boundaries- of 'a Bayesian classifier (FORD, 1996;
FRIEDMAN: and KANDEL, 1999). The structure
of the classifier is depicted in the figure 3. It is
constituted by two layers. The first one is
denominated competitive layer. In this layer, the
Euclidian metric (DIST module in the figure)
determines the distance between the input pattern x
and the s=(n,+n,;) reference vectors (R;). The
reference vectors, defined by the training of the
neural network, is composed by n; subclasses
representing the WM class and n; subclasses for the
BA class. A "winner takes it all" algorithm
activates ("1") a single neuron among the n,
neurons of class WM or among the n, neurons of
class BA. All other neurons are not activated ("0").
The only activated neuron corresponds to the
reference vector closest to the input pattern. The
second layer is linear and associates a weight "1" to
each subclass of the corresponding class. Therefore,
applying an input pattern x to the classifier, only
one class (either WM or BA) is activated.

Neural networks were trained by session
(or group of sessions, case a given volunteer has
taken part in more than one session of the same
task), by task and by volunteer. Two thirds of data
were used for training and one third for testing.

The criterion for evaluating the
performance of the neural networks was defined as
the number of correct classifications (HAND,
1997). That is, the number of true positive
(presence of MRD) and true negative (presence of
background  activity) relatively to  the
misclassification cases. Common measures of
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performance for classifiers is the sensitivity and
specificity, defined as follows:

: tp(i)
se(i) = ——2— 0y
0= 0+ 0@
. tn(i)
spli) = — L )
o) = e 10
where:
i - i-th training epoch
S€ - sensitivity
tp - (true positive) number of correct
classifications for the WM class
fn - (false negative) number of wrong

classifications for the WM class
Sp - specificity

tn - (true negative) number of correct
classifications for the BA class
fp - (false positive) number of wrong

classifications for_ the BA class
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Figure 3 — Structure of the LVQ neural network

Sensitivity and specificity identifies
respectively the proportion of cases of the WM
class and BA class that are correctly classified as
so. These two measures were calculated for both
the training and the testing sets. Using these
measures, a performance index (de) of the i-th
training epoch of a neural network was calculated
by the following equation:

de(i) = %seii )-esi) (35

This index is normalized in the range
[0..1], where O is defined as the worst performance
(0% of correct classifications) and 1 the best
(100%). This index facilitates the analysis of the
neural network training since it uses both sensitivity
and specificity.
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5. Results

The parameters to be adjusted in a LVQ
neural network training are: learning rate @ and the
number of training epochs. The training aims to
find the best reference vectors for each class.

According to the literature, the optimal number of

epochs for training a LVQ neural network ranges
between 50 and 200 times the number of subclasses
~considered. In this work, it was found that 250
times the number of subclasses was enough to
reach the best performance.

The learning rate was empirically set to
0.01, since previous experiments have shown that
better results' were obtained with « within the
range of 0.005 to 0.02 than outside it.

All the 36 possible combinations using 1
to 6 reference vectors for each class (WM and BA)
were tried in order to find the best combination.
Each training was repeated three times for all
volunteers. The best results for all volunteers are
shown in table 1 :

Table 1 — Training results of the LVQs networks

Volunte | Movement | Subclasses | Performa

er# nce
BA | WM [%]

1 Single 6 5 64,0

1 Repetition | 3 4 78,1
2 Single 3 1 88,2
2 Repetition | 4 1 72,2
3 Single 4 2 65,6
"3 Repetition | 1 1 71,7
4 Single 2 2 63,2
5 Single 2 5 57,6
5 Repetition | § 5 62,1
6 Single 4 3 62,1
6 Repetition 4 3 59,1

7 Single 1 3 | 559
7 Repetition | 2 1 70,8
8 Repetition | 2 4 60,1
9 Repetition 3 2 53,8
13 Single 5 3 73,8
13 Repetition | 5 5 60,6

In table 1 it can be seen that not all
volunteers have their signals used in the
experiment. This happened when visual inspection
of the data followed by a variance analysis did not
show the presence of a pattern. In such cases these
signals were discarded. Data shown in table 1 is
summarized in table 2, showing the average
performance.
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Table 2 — Comparative average performance

Movement Performance [%]
| Average | Max. | Min.
Single 66,3 | 882 | 559
Repetition | 654 | 78,1 | 538
Movement Subclass: BA
Average | Max. | Min.
Single 34 6
Repetition 3,2 5 -1
Movement Subclass: WM
: Average | Max. | Min.
Single 3 5
Repetition 2,9 5 1

(*) — significance (p) 84%

6. Discussion and Conclusions

- The averaged time response enabled the
observation of the MRD of the mu band as
expected.

The classifiers (LVQ neural network)
trained for both tasks achieved about the same
performance (around 65%), in average. This means
that the construction of a command set associated
to the detection of movements (aiming a BCI) can
be based in the single movement task. For both
tasks the structure of the classifier is similar, being
necessary an average of 3 subclasses for each class
(WM or BA).

The Kohonen LVQ neural network was
suited for identifying the two classes of
electroencephalographic signals approached in this
work. This suggests that the classifier is robust
enough for such applications, considering that the
EEG samples used were very noisy. The training
phase was relatively fast in comparison with other
methods. This is a crucial feature for classifiers that
has to be adapted in real-time, what is the case of.
some applications of Brain-Computer Interfaces
(BCI).

The results obtained in this work
encourages  further development of the
methodology here reported, being important steps
towards BCI technologies.
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