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Abstract - In this work, we aimed to detect the non-averaged MRD of the mu rhythm from the background 
activity of the EEG. The MRD was produced in the contralateral sensorimotor cortex by means of a movement 
of the right hand. Thirteen volunteers took part in the experiments. They were all right-handed and had ages 
between 22 and 37 years old. The volunteers were asked to do one of two tasks: (a) just one movement by trial; 
(b) repetition of movements. The EEG signal was taken in the scalp near to C3 lead. The signal was amplified, 
sampled and digitally filtered off-line. The time response of the mu band was computed with the FFT'. Windows 
of the time response was used as predicates in the training and testing of a neural network classifier. 
Representative samples of MRD and background activity was taken for each class. The neural networks used 
were LVQ and they were trained by session, by task and by volunteer. The performance was measured by the 
geometric mean of the sensibility and specificity indexes, calculated for every training epoch over test data. The 
best detection performance was 88% for the single movement task and 78% for repetition of movements, with an 
average of 66% for both tasks. For the LVQ, only 3 subclasses for every class were sufficient, and a constant 
learning rate of 0.01 with the number of training epochs calculated by the relation of 250 x (total number of 
subclasses) was enough to get the best results. 
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1. Introduction 

Movements of limbs produce changes in 
the electroencephalographic signal, notably in the 
sensorimotor cortex contralateral to the limb. These 
changes are. known as MRD (movement-related 
desychronization) and can be detected in the mu 
band (8-12 Hz) (NASHMI et al., 1994; 
FLOTZINGER et al., 1992; FLOTZINGER et al., 
1994; PFURTSHELLER et al., 1994; 
PFURTSHELLER et al., 1996). 

The objective of this work is to develop a 
classifier system capable of identify the MRD from 
the background activity of the EEG. 

Experiments were conducted to evaluate 
two different ways of producing MRDs, using for 
such, two tasks that include the movement of the 
right hand. The first task is a single movement of 
the wrist, upward and downward. The second task 
was the repetition of the same movement. 

The work also aims to evaluate the 
performance of a Linear Vector Quantization 
(LVQ) neural network as a classifier. 

The technique used here will be further 
applied to implement a Brain-Computer Interface 
(BCI) (PILLA JlfNIOR, 1999). 
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2. Methodology 

The experimental setup used for collecting 
signals from volunteers is shown in figure 1. 

The EEG was collected from the scalp 
using electrodes near the C3 lead (according to the 
International Federation 10/20 system). The first 
electrode (C3a) was put 25 mm ahead of C3 and the 
second (C3p), the same distance before. A 
differential amplifier (gain 30,000 V N )  also filters 
the input EEG in the band 8-100 Hz and the 
sampling rate was 1,280 Hz. 

In a given signal collection session, the 
same task was executed in all trials (single 
movement or repetition). At least 50 valid trials, 
during 20 sec each, were collected from each 
volunteer. Valid trials were those when no artifacts 
were visually detected. After the session, all 
samples were again inspected to eliminate those 
with undesired artifacts. 

In the screen of a personal computer a 
sequence of events for each task was presented in 
order to guide the volunteer. For the first task 
(single movement), an arrow was presented in the 
screen at t=6s to indicate that the movement had to 
be done immediately. For the second task an arrow 
was presented in the screen in t=l 1s to tell the 
volunteer that he/she had to start the movements. 
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This arrow was presented again 8 times in intervals 
of 1 s. All trials had an overall duration of 20 s. 

All volunteers participate of sessions were 
both tasks were done. 

Figure 1 - Experimental setup 

In all sessions, the volunteers were sit 
down comfortably in a reclined chair, lights were 
turned off and the room temperature was lower than 
25 "C. Volunteers should stay mentally and 
physically relaxed but waked up, staring at the 
computer screen. 

The movement of the hand was upward 
and downward tuming around the wrist. The task 
should be completed between 0.4 and 0.9 seconds. 
(helped by visual timing in the screen). All 
volunteers were submitted to a previous training 
session in order to get familiarized with the 
procedure. 

Thirteen volunteers (1 2 male and 1 female) 
took part in the experiments. They were all right- 
handed and had ages between 22 and 37 years old. 

3. Signal processing 

Signals collected from the volunteers were 
processed offline. Initially, the raw signal was 
digitally filtered by a low-pass 128 Hz Hanning 
window FIR filter of order 128. After, sampled 
signal was decimated, reducing the initial sampling 
rate (1280 Hz) to 256 Hz. Next, the mu band was 
extracted using a digital band-pass FIR filter, order 
64, in the range 7-13 Hz. Using this filtered signal, 
the time response of the mu band was calculated at 
intervals of 0.125 s (32 samples) using a window of 
1 s (256 samples). For every window, the was 
computed (BOASHAH, 1992). Thus, the k-th time 
response y(k) of the mu band is defined as the 
average of the absolute value of the spectrum 
components between 8-12 Hz, taken for the k-th 
window of a given trial. 
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In this way, the time response of the mu 
band was computed for every trial of each session 
with the volunteers. 

In the figure 2 it is shown the time 
response of the mu band taken as the average by 
session for two different volunteers. In this figure, 
it is seen the presence of a valley between tz6s and 
tz8s (for single movement task) for both 
volunteers. This valley corresponds to the presence 
of the MRD of the mu band associated to the 
movement. In the sessions of multiple movements, 
for the first volunteer, the valley can be seen after 
tz l  1s and persists until the last movement in tz19s. 
For the second volunteer, the MRD disappeared 
soon, probably because he was too relaxed during 
that session, not being capable of repeating the 
movements in synchrony. 
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3gure 2: Averaged time response of the mu band. 
Top: volunteer #l ;  bottom: volunteer #2 

4. Neural network training 

Data for training and testing the classifier 
were constituted by vectors of 9 samples taken as 
windows from the time response (non-averaged) of 
the mu band. The data set was divided into two 
classes, "with movement" (WM) and "background 
activity" (BA), where the first corresponds to the 
windows where the MRD was present. 
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For the single movement task, the 
windows for the WM class were taken between 
t=6.5s and t = 7 5  and, for the BA class, after t=lOs. 
The significance level of p>>5% was used as 
criterion to select the windows for the BA class. It 
was calculated using variance analysis (ANOVA) 
using the interval t=lOs to t=20s as reference. 

A proportion of one window of WM to 
three of BA was used for every trial in the session 
for this task for the training / test set. 

For the multiple movements task, the WM 
class windows were taken from the time response 
after t=l Is, using the significance criteria of ~ 1 5 % .  
The windows for the BA class were taken in the 
interval t=2s to t=lOs using p>>5%. In both cases, 
the reference was the interval with background 
activity, i.e., between t=2s and t=lOs. A proportion 
of 3 classes WM to 3 classes BM was used for the 
trials in this task for the training / test set. 

The classifier used was a Kohonen 
Learning Vector Quantization (LVQ type 2) neural 
network (KOHONEN, 1997), as shown in figure 3. 
This classifier is based on clustering with 
supervised learning. It uses a vector quantization 
architecture to approximate the optimal decision 
boundaries of a Bayesian classifier (FORD, 1996; 
 FRIEDMAN^ and KANDEL, 1999). The structure 
of the classifier is depicted in the figure 3. It is 
constituted by two layers. The first one is 
denominated competitive layer. In this layer, the 
Euclidian metric (DIST module in the figure) 
determines the distance between the input pattern x 
and the s=(nl+nz) reference vectors (9). The 
reference vectors, defined by the training of the 
neural network, is composed by nl subclasses 
representing the WM class and n2 subclasses for the 
BA class. A "winner takes it all" algorithm 
activates ("1") a single neuron among the nl 
neurons of class WM or among the n2 neurons of 
class BA. All other neurons are not activated ("0). 
The only activated neuron corresponds to the 
reference vector closest to the input pattern. The 
second layer is linear and associates a weight "1" to 
each subclass of the corresponding class. Therefore, 
applying an input pattern x to the classifier, only 
one class (either WM or BA) is activated. 

Neural networks were trained by session 
(or group of sessions, case a given volunteer has 
taken part in more than one session of the same 
task), by task and by volunteer. Two thirds of data 
were used for training and one third for testing. 

The criterion for evaluating the 
performance of the neural networks was defined as 
the number of correct classifications (HAND, 
1997). That is, the number of true positive 
(presence of MRD) and true negative (presence of 
background activity) relatively to the 
misclassification cases. Common measures of 
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performance for classifiers is the sensitivity and 
specificity, defined as follows: 

where: 
i -  
se - 
tP - 
fn - 

SP - 
tn - 

fP - 

se(i) = tP(i) 
tp(i)+ fn(i) 

tn(i) 
tn(i)+ fp(i) 

sp(i) = 

i-th training epoch 
sensitivity 
(true positive) number of correct 
classifications for the WM class 
(false negative) number of wrong 
classifications for the WM class 
specificity 
(true negative) number of correct 
classifications for the BA class 
(false positive) number of wrong 
classifications for the BA class 
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Figure 3 - Structure of the LVQ neural network 

Sensitivity and specificity identifies 
respectively the proportion of cases of the WM 
class and BA class that are correctly classified as 
so. These two measures were calculated for both 
the training and the testing sets. Using these 
measures, a performance index (de) of the i-th 
training epoch of a neural network was calculated 
by the following equation: 

This index is normalized in the range 
[0..1], where 0 is defined as the worst performance 
(0% of correct classifications) and 1 the best 
(100%). This index facilitates the analysis of the 
neural network training since it uses both sensitivity 
and specificity. 
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5. Results 
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The parameters to be adjusted in a LVQ 
neural network training are: learning rate a and the 
number of training epochs. The training aims to 
find the best reference vectors for each class. 
According to the literature, the optimal number of 
epochs for training a LVQ neural network ranges 
between 50 and 200 times the number of subclasses 
considered. In this work, it was found that 250 
times the number of subclasses was enough to 
reach the best performance. 

The learning rate was empirically set to 
0.01, since previous experiments have shown that 
better results were obtained with a within the 
range of 0.005 to 0.02 than outside it. 

All the 36 possible combinations using 1 
to 6 reference vectors for each class (WM and BA) 
were tried in order to find the best combination. 
Each training was repeated three times for all 
volunteers. The best results for all volunteers are 
shown in table 1 

9 
13 
13 

Table 1 - Training results of the LVQs networks 
I Volunte I Movement I Subclasses 1 Performa I 

Repetition 3 2 53,8 
Single 5 3 73,8 

Repetition 5 5 60,6 

1 i ~ R ~ f % m ~ ~ ~  1 1 
Single 88,2 

Re etition 4 72,2 
Single 4 65,6 

ReDetition 1 1 71.7 
4 1  Single I 2 I 2 I 63,2 
5 1  Single I 2 I 5 I 57.6 
5 I Repeztion I 5 I 5 I 62,l 
6 1  Single I 4 I 3 I 62,l 
6 I Repetition I 4 I 3 1 59,l 
7 1  Single I 1 I 3 I 55.9 
7 I Repetition I 2 I 1 I 70,8 
8 I Repetition I 2 I 4 1 60,l 

In table 1 it can be seen that not all 
volunteers have their signals used in the 
experiment. This happened when visual inspection 
of the data followed by a variance analysis did not 
show the presence of a pattern. In such cases these 
signals were discarded. Data shown in table 1 is 
summarized in table 2, showing the average 
performance. 

Table 2 - Comparative average performance I Movement 1 Performance I%] 

6. Discussion and Conclusions 

The averaged time response enabled the 
observation of the MRD of the mu band as 
expected. 

The classifiers (LVQ neural network) 
trained for both tasks achieved about the same 
performance (around 65%), in average. This means 
that the construction of a command set associated 
to the detection of movements (aiming a BCI) can 
be based in the single movement task. For both 
tasks the structure of the classifier i's similar, being 
necessary an average of 3 subclasses for each class 
(WM or BA). 

The Kohonen LVQ neural network was 
suited for identifying the two classes of 
electroencephalographic signals approached in this 
work. This suggests that the classifier is robust 
enough for such applications, considering that the 
EEG samples used were very noisy. The training 
phase was relatively fast in comparison with other 
methods. This is a crucial feature for classifiers that 
has to be adapted in real-time, what is the case of 
some applications of Brain-Computer Interfaces 
(BCI). 

The results obtained in this work 
encourages further development of the 
methodology here reported, being important steps 
towards BCI technologies. 
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