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Abstract- This paper describes the computational
simulation of an electroencephalographic (EEG) signal
(background activity, alpha waves) by filtering a white
noise with an ARMA (Autoregressive Moving Average)
filter. The filter coefficients were obtained interactively
using genetic algorithms, comparing the spectrum of a
real and a simulated signal. Results demonstrate the
feasibility of the technique.

1 Introduction

The human electroencephalographic (EEG) signal is
very complex, stochastic by nature and dependent of a
number of variables, such as the localization in the scalp,
the level of awareness and the underlying mental state of the
individual, among others. Frequently, a typical EEG has a
random component overlapped with some known rhythm,
specially alpha, beta or theta waves. In particular, alpha
waves appear mainly in the occipital region of the head,
when the individual is relaxed (but not sleepy) and with
eyes closed.

The computational simulation of the EEG is a
challenging task due to the variability and complexity of the
signal. As consequence, it is rarely found in the literature
aproaches to this task. In the past, a mathematical method
was proposed for simulating some simple patterns of the
electric activity of the brain (Zetterberg, 1973; Zetterberg
and Ahlin, 1975). This method is based on the filtering of a
white noise by an Autoregressive-Moving Average
(ARMA) filter. More details about this method will be
presented in the next section.

The Zetterberg's method requires the computation of the
ARMA filter coefficients, but this is not trivial at all, since
this requires the minimization of nonlinear equations based
on some assumptions. Anyway, it is possible to circumvent
this difficulty by using quasi-optimal estimators. Typical
approximated methods are: maximum likelihood estimator
(MLE), Akaike´s method, modified Yule-Walker method,
singular value decomposition (SVD) method, Durbin
method, etc. Some of these are described in details in
Zetterberg (1977), Makhoul (1975) and Eykhoff (1974), but
even so, the computational implementation of these
methods are very hard.

The difficulty in estimating the filter coefficients using
traditional methods, which usually employ statistical
parameters and matrix operations, has motivated the
development of an iterative methodology. This
methodology is based on the idea that the adjustment of the
filter coefficients is like a search in a n-dimensional space,
where the dimension depends on the order of the filter.

2 Background

2.1 Zetterberg’s method for simulating EEG signals
The computational simulation of an EEG signal can be

satisfactory accomplished by means of a method developed
by Zetterberg (1973, 1975, 1978). In this method, the
simulated EEG is the result of filtering a white noise source
of specific characteristics (normal distribution, zero mean,
variance σ2 and flat spectrum in the frequency range of
interest) with an ARMA filter. The linear differential
equation [1] represents the filter, order p (where p ≥ q).
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where ev is the input (white noise), xv is the output of the
filter, ap and bq are the filter coefficients.

2.2 Autoregressive-Moving Average filter
The ARMA filter is a composition of the AR

(Autoregressive) and the MA (Moving Average) filters, and
can be expressed by the following transfer function:

),1(

),1(

pzA

qzB
H ARMA −

−= [2]

where the numerator is related to the MA and the
denominator, to the AR models. Usually, the AR filter is
more suitable for the simulation of signals which spectrum
displays sharp peaks. In the other hand, the MA filter is
more suitable to signals with deep valleys in the spectrum.

The computational implementation of an ARMA filter
requires that the linear differential equation [1] must be
changed to its recursive form, as shown in equation [3].
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To estimate the order of an ARMA filter, we used the
same approach proposed by Vaz, Oliveira and Príncipe
(1987) for the estimation of autoregressive (AR) filters.
Also, Lopes da Silva (1987) suggests that both AR and
ARMA filters can be used for both EEG simulation and
signal analysis. The analysis of the EEG using
autoregressive modeling is done by applying the EEG signal
to the inverse of the estimated ARMA filter. As result, it is
expected a noise with normal distribution, zero mean and
variance σ2, since that it is considered a stationary process
(for the sake of the background activity). If the resulting
noise does not follow the normal distribution, an artifact or
relevant event in the EEG is detected, such as spikes or
sharp waves.

3 Methodology

3.1 White noise generator
To meet the requirements of the Zetterberg method, the

white noise source has to have normal distribution, with
zero mean and a given variance. With these settings, the
result has a Gaussian distribution and the power spectrum is
flat in the frequency range of interest (0-100 Hz). A routine
in C programming language was developed to implement
the white noise generator.

3.2 The EEG signal
A 5 seconds segment (corresponding to 1000 samples)

taken in the C3 lead of a real patient was used to compare
with the simulated signal. This segment had no significant
graphoelements and was chosen by an expert physician who
has classified it as being a background activity with
predominance of alpha waves. This real signal was used for
comparison with the simulated signal.

3.3 Time to frequency transformation
  The fitness function, described below, compares the

spectrum of the real EEG with the spectrum of the
simulated EEG. A routine in C was implemented to
transform the signal from the time to the frequency domain.
Since the selected segment for comparison has 1000
samples and not 1024, it was not possible to use the Fast
Fourier Transform (FFT) instead, the Discrete Fourier
Transform (DFT) algorithm was used.

3.4 Chromosome structure
In the chromosome, the variables of the problem are

represented as genes. These variables are the filter
coefficients, and the number of genes in the chromosome
depends on the filter order.

As first approach, a 5th-order filter was used to simulate a
5-sec. EEG segment. For this filter, nine coefficients have to

be found: a1, a2, a3, a4, a5, b1, b2, b3 and b4. The filter
coefficients are in the range [-1,+1], and 12 bits per variable
were used, giving a chromosome 108 bits long, thus a
search space of approximately 3,25 x 1032.  For higher order
filters, the size of the chromosome (and the search space)
increases proportionally. Therefore, for the 5th-order filter,
we have a chromosome 168 bits long and a search space
3,74 x 1050.

3.5 Fitness function
In order to compute how close is a simulated signal from

the original, the fitness function shown in equation 4 was
used. It is as a function of the error between the spectrum of
the simulated and the real signal, computed point-to-point in
the frequency domain.
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Equation 4 makes the fitness function less sensible to
large errors, inducing a faster convergence for the genetic
algorithm when the error decreases, as shown in figure 1.

Figure 1: Shape of the fitness function.

The error used in equation 4 is computed as a weighting
function according to the frequency range and the absolute
value of the DFT. This is done in order to induce the
convergence of the AG in such a way to favour individuals
with the spectral shape similar to the real signal. The
weights used were empirically obtained by observing the
DFT of the real signal, shown in figure 2(a). Using this
weighting system, it is possible to penalty individuals that
generate a simulated signal somewhat similar (to the real
signal) in the time domain but quite different in the
frequency domain. The weights were set according to table
1, where Wi is the weight value, Fi is the frequency range (or
limit) in Hz and Ai is the amplitude of the spectral
component of the simulated signal.



Table 1: Weights used in the fitness function.
Wi value Fi Ai

W1 1.5 – 2.5 < 8 > 20
W2 1.0 – 2.0 8 – 10 > 60
W3 3.5 – 4.5 > 10 > 1
W4 0.1 – 0.7 none of the above

Using the weights shown in table 1, the error was
computed for each spectral component, using equation 5:

2).( iixi RSWerror −= [5]

where Si is the amplitude of the spectral component of the
simulated signal and Ri the same of the real signal.

3.6 Genetic algorithm parameters
In all experiments, we used the tournament selection

using 10% of the population. This selection method imposes
less selective pressure on the GA than the traditional
roulette wheel and is suitable for a slower convergence. The
genetic operators were: double point crossover with
probability of  95% and single bit mutation with probability
of 10% per bit. The GA was run for 100 generations and
used a population of 200 individuals.

3.7 Simulation and analysis
The GA used in this work was based in a public domain

software named GALOPPS, version 3.2 (Goodman, 1996).
For each filter order, the GA was run 10 times with the
same parameters, but different initial random seed. The best
individual of all runs was elected as result for that filter.
After running the GA, the better individual found was used
in a simulation program, written in C,  with a graphic
output. This program simulates the ARMA filter, whose
coefficients were found by GA, using the Zetterberg
approach, previously mentioned. In addition, it was
necessary to use a digital filter following the ARMA filter in
order to remove high frequency noise. This filter was a low-
pass second-order Butterworth filter, with unity gain and –3
dB point at 20 Hz.

4 Results

The real signal used in this work had some useful
characteristics for comparison with a simulated signal. Its
largest spectral component had an absolute value of 60 and
was in 9 Hz (characteristic of alpha waves). By integrating
the whole spectrum, from 0 to 100 Hz, it is possible to have
an additional quantitative parameter for comparison,
resembling the spectral power of the signal. For the original
signal, the integral was 268.25.

Table 2 summarizes the better results found for the
simulations of ARMA filters from order 5 up to 8. In this
table, symbols Serror , Alsc , Flsc stands respectively for: the

weighted sum of the errors (according to equation 5), the
amplitude of the largest spectral component and the
frequency of the largest spectral component. The table also
shows the best filter coefficients ai and bi obtained by the
GA.

The real signal as well as the simulated signals using
the filter coefficients of table 2 are shown in figure 3. In
these figures 200 samples are equivalent to 1 second of the
signal. In the same way, the real signal in frequency domain
(calculated using the DFT), as well as the simulated ones
are shown in figure 2.

Table 2: Results for four different filter orders.
Filter
order

5 6 7 8

Serror 128.4 93 85 41
Alsc 65 64 65 69
Flsc 7 8 9 9

Integral 732.5 537 526 307
a1 0.27099 0.40479 -0.42432 0.56396
a2 -0.74268 -0.67139 0.30518 -0.39941
a3 0.66162 -0.62061 -0.54443 -0.90088
a4 0.10059 -0.48780 -0.38135 -0.19628
a5 -0.61035 0.41309 0.13281 -0.06396
a6 0.64453 -0.03174 0.24014
a7 0.55127 0.46973
a8 0.48633
b1 0.04932 -0.73340 -0.63867 -0.61621
b2 0.27002 0.93506 0.78662 0.73828
b3 0.72559 -0.81787 -1.0 -0.41162
b4 0.41748 0.27099 -0.750 -0.07178
b5 0.27246 -0.26123 0.52246
b6 -1.0 -0.87939

5 Discussion

According to Vaz, Oliveira and Príncipe (1987), the
simulation of signals of small duration (1 to 2 seconds)
requires smaller orders for the ARMA filter. We started the
GA searching for the coefficients of an ARMA filter using
an 5-sec EEG segment with predominance of alpha rhythm.
Results obtained were very bad and were not reported here,
although successive decreasing of the signal duration
yielded better results. Then we decided to keep the original
duration and increase the filter order, thus leading to a
harder problem for the GA.

The analysis of table 2 shows that the results obtained
for the 8th order filter, what is concerned to Alsc, Flsc and the
integral, are quite close to those for the original signal. The
frequency of the largest spectral component is the same and
relation between Alsc for the simulated signal and the real is
60/69=0.8695. In the same way, the relation between Flsc for
the simulated signal and the real is 268.25/307=0.8738.



Therefore, the simulated signal has a larger average
amplitude (in time domain) than the real signal, what is not
much significant.

6 Conclusions

The main goal of this work was achieved since the
coefficients of the ARMA filter were successfully computed
for the simulation of a very complex signal.

When examining the results, it should be kept in mind
the motivation of this work, since they have to be analysed
per se, due to the difficult of comparison of this technique
with others for ARMA filters design.

ARMA filters are useful not only in biological signal
processing, but also in control systems. The method
proposed in this work may be of some interest in replacing
existing methods.

Further work shall be done including the simulation of
other types of EEG signals (with predominance of other
rhythms) and the comparison of the Zetterberg's method to
others for EEG simulation as in (Barlow, 1993) and
(Janeczko and Lopes, 2000).

 Also, we intend to use a more sophisticated fitness
function that would take into account not only the error
between the simulated and the real signal as used here, but
also other objectives.
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Figure 2: Real and simulated signals in the frequency
domain. Horizontal axis represents the spectral
component number and vertical axis the amplitude.
(a) Spectrum of the real signal. (b) Spectrum of  the
simulated signal with a 5th-order ARMA filter. (c)
Same, with a 6th-order ARMA filter. (d) Same, with a
7th-order ARMA filter. (e) Same, with a 8th-order
ARMA filter.

a) b)

c) d)

e)



Figure 3: Real and simulated signals in the time domain. Horizontal axis represents the sample number (1 second =
200 samples) and vertical axis the normalized amplitude. (a) Real signal. (b) Simulated signal with a 5th-order
ARMA filter. (c) Same, with a 6th-order ARMA filter. (d) Same, with a 7th-order ARMA filter. (e) Same, with a 8th-
order ARMA filter.
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