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Abstract- This paper describes the computational 
simulation of an electroencephalographic (EEG) signal 
(background activity, alpha waves) by filtering a white 
noise with an ARMA (Autoregressive Moving Average) 
filter. The filter coefficients were obtained interactively 
using genetic algorithms, comparing the spectrum of a 
real and a simulated signal. Results demonstrate the 
feasibility of the technique. 

1 Introduction. 
The human electroencephalographic (EEG) signal is 

very complex, stochastic by nature and dependent of a 
number of variables, such as the localization in the scalp, 
the level of awareness and the underlying mental state of the 
individual, among others. Frequently, a typical EEG has a 
random component overlapped with some known rhythm, 
specially alpha, beta or theta waves. In particular, alpha 
waves appear mainly in the occipital region of the head, 
when the individual is relaxed (but not sleepy) and with 
eyes closed. 

The computational simulation of the EEG is a 
challenging task due to the variability and complexity of the 
signal. As consequence, it is rarely found in the literature 
aproaches to this task. In the past, a mathematical method 
was proposed for simulating some simple patterns of the 
electric activity of the brain (Zetterberg, 1973; Zetterberg 
and Ahlin, 1975). This method is based on the filtering of a 
white noise by an Autoregressive-Moving Average 
(ARMA) filter. More details about this method will be 
presented in the next section. 

The Zetterberg’s method requires the computation of the 
ARMA filter coefficients, but this is not trivial at all, since 
this requires the minimization of nonlinear equations based 
on some assumptions. Anyway, it is possible to circumvent 
this difficulty by using quasi-optimal estimators. Typical 
approximated methods are: maximum likelihood estimator 
(MLE), Akaike’s method, modified Yule-Walker method, 
singular value decomposition (SVD) method, Durbin 
method, etc. Some of these are described in details in 
Zetterberg (1 977), Makhoul (1 975) and Eykhoff (1 974), but 
even so, the computational implementation of these 
methods are very hard. 
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The difficulty in estimating the filter coefficients using 
traditional methods, which usually employ statistical 
parameters and matrix operations, has motivated the 
development of an iterative methodology. This 
methodology is based on the idea that the adjustment of the 
filter coefficients is like a search in a n-dimensional space, 
where the dimension depends on the order of the filter. 

2 Background 

2.1 Zetterberg’s method for simulating EEG signals 
The computational simulation of an EEG signal can be 

satisfactory accomplished by means of a method developed 
by Zetterberg (1973, 1975, 1978). In this method, the 
simulated EEG is the result of filtering a white noise source 
of specific characteristics (normal distribution, zero mean, 
variance 0’ and flat spectrum in the frequency range of 
interest) with an ARMA filter. The linear differential 
equation [ 11 represents the filter, orderp (where p 2 9). 

x, +a,x,-, +--+a,x,-, = 

e,  +b,e,,-, +--bqev-q  
[ l l  

where e,, is the input (white noise), x,, is the output of the 
filter, up and h,, are the filter coefficients. 

2.2 Autoregressive-Moving Average filter 
The ARMA filter is a composition of the AR 

(Autoregressive) and the MA (Moving Average) filters, and 
can be expressed by the following transfer function: 

where the numerator is related to the MA and the 
denominator, to the AR models. Usually, the AR filter is 
more suitable for the simulation of signals which spectrum 
displays sharp peaks. In the other hand, the MA filter is 
more suitable to signals with deep valleys in the spectrum. 

The computational implementation of an ARMA filter 
requires that the linear differential equation [ I ]  must be 
changed to its recursive form, as shown in equation 131. 
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x(n)  = e(n) + b,e(n - 1) + . e .  +b,e(n - q)  - 
[31 a ,  x( n - 1) - a,x(n - 2) - . . - a x ( n  - p )  

To estimate the order of an ARMA filter, we used the 
same approach proposed by Vaz, Oliveira and Principe 
(1987) for the estimation of autoregressive (AR) filters. 
Also, Lopes da Silva (1987) suggests that both AR and 
ARMA filters can be used for both EEG simulation and 
signal analysis. The analysis of the EEG using 
autoregressive modeling is done by applying the EEG signal 
to the inverse of the estimated ARMA filter. As result, it is 
expected a noise with normal distribution, zero mean and 
variance 02, since that it is considered a stationary process 
(for the sake of the background activity). If the resulting 
noise does not follow the normal distribution, an artifact or 
relevant event in the EEG is detected, such as spikes or 
sharp waves. 

3 Methodology 

3.1 White noise generator 
To meet the requirements of the Zetterberg method, the 

white noise source has to have normal distribution, with 
zero mean and a given variance. With these settings, the 
result has a Gaussian distribution and the power spectrum is 
flat in the frequency range of interest (0-100 Hz). A routine 
in C programming language was developed to implement 
the white noise generator. 

3.2 The EEG signal 
A 5 seconds segment (corresponding to 1000 samples) 

taken in the C3 lead of a real patient was used to compare 
with the simulated signal. This segment had no significant 
graphoelements and was chosen by an expert physician who 
has classified it as being a background activity with 
predominance of alpha waves. This real signal was used for 
comparison with the simulated signal. 

3.3 Time to frequency transformation 
The fitness function, described below, compares the 

spectrum of the real EEG with the spectrum of the 
simulated EEG. A routine in C was implemented to 
transform the signal from the time to the frequency domain. 
Since the selected segment for comparison has 1000 
samples and not 1024, it was not possible to use the Fast 
Fourier Transform (FFT) instead, the Discrete Fourier 
Transform (DFT) algorithm was used. 

3.4 Chromosome structure 
In the chromosome, the variables of the problem are 

represented as genes. These variables are the filter 
coefficients, and the number of genes in the chromosome 
depends on the filter order. 

As first approach, a 5”-order filter was used to simulate a 
5-sec. EEG segment. For this filter, nine coefficients have to 

be found: a,, a?, a,, a,, a,, h,, h,, h, and h,. The filter 
coefficients are in the range [-1,+1], and 12 bits per variable 
were used, giving a chromosome 108 bits long, thus a 
search space of approximately 3,25 x IO”. For higher order 
filters, the size of the chromosome (and the search space) 
increases proportionally. Therefore, for the 5*-0rder filter, 
we have a chromosome 168 bits long and a search space 

3.5 Fitness function 
In order to compute how close is a simulated signal from 

the original, the fitness function shown in equation 4 was 
used. It is as a function of the error between the spectrum of 
the simulated and the real signal, computed point-to-point in 
the frequency domain. 

3,74 ios0. 

Equation 4 makes the fitness function less sensible to 
large errors, inducing a faster convergence for the genetic 
algorithm when the error decreases, as shown in figure 1. 
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Figure 1: Shape of the fitness function. 

The error used in equation 4 is computed as a weighting 
function according to the frequency range and the absolute 
value of the DFT. This is done in order to induce the 
convergence of the AG in such a way to favour individuals 
with the spectral shape similar to the real signal. The 
weights used were empirically obtained by observing the 
DFT of the real signal, shown in figure 2(a). Using this 
weighting system, it is possible to penalty individuals that 
generate a simulated signal somewhat similar (to the real 
signal) in the time domain but quite different in the 
frequency domain. The weights were set according to table 
1, where W, is the weight value, F,  is the frequency range (or 
limit) in Hz and A# is the amplitude of the spectral 
component of the simulated signal. 
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Table 1: Weights used in the fitness function. l : T i  value I F i l A i l  
1.5 - 2.5 < 8  > 20 

W? 1.0 - 2.0 8 -  10 > 60 
3.5 - 4.5 > 10 > I  

w4 0.1 - 0.7 none of the above 

Using the weights shown in table I ,  the error was 
computed for each spectral component, using equation 5: 

PI 2 el-roi; = W,.(Si - R,) 
where S, is the amplitude of the spectral component of the 
simulated signal and R, the same of the real signal. 

3.6 Genetic algorithm parameters 
In all experiments, we used the toumament selection 

using 10% of the population. This selection method imposes 
less selective pressure on the GA than the traditional 
roulette wheel and is suitable for a slower convergence. The 
genetic operators were: double point crossover with 
probability of 95% and single bit mutation with probability 
of 10% per bit. The GA was run for 100 generations and 
used a population of 200 individuals. 

3.7 Simulation and analysis 
The GA used in this work was based in a public domain 

software named GALOPPS, version 3.2 (Goodman, 1996). 
For each filter order, the GA was run 10 times with the 
same parameters, but different initial random seed. The best 
individual of all runs was elected as result for that filter. 
After running the GA, the better individual found was used 
in a simulation program, written in C, with a graphic 
output. This program simulates the ARMA filter, whose 
coefficients were found by GA, using the Zetterberg 
approach, previously mentioned. In addition, it was 
necessary to use a digital filter following the ARMA filter in 
order to remove high frequency noise. This filter was a low- 
pass second-order Butterworth filter, with unity gain and -3 
dB point at 20 Hz. 

4 Results 
The real signal used in this work had some useful 

characteristics for comparison with a simulated signal. Its 
largest spectral component had an absolute value of 60 and 
was in 9 Hz (characteristic of alpha waves). By integrating 
the whole spectrum, from 0 to 100 Hz, it is possible to have 
an additional quantitative parameter for comparison, 
resembling the spectral power of the signal. For the original 
signal, the integral was 268.25. 

Table 2 summarizes the better results found for the 
simulations of ARMA filters from order 5 up to 8. In this 
table, symbols S,,,, , A/!c , F,,c stands respectively for: the 

weighted sum of the errors (according to equation 5), the 
amplitude of the largest spectral component and the 
frequency of the largest spectral component. The table also 
shows the best filter coefficients a, and h, obtained by the 
GA. 

The real signal as well as the simulated signals using 
the filter coefficients of table 2 are shown in figure 3. In 
these figures 200 samples are equivalent to 1 second of the 
signal. In the same way, the real signal in frequency domain 
(calculated using the DFT), as well as the simulated ones 
are shown in figure 2. 

Table 2: Results for four different filter orders. 
5 I 6 I 7 I 8 1 

[ a. I 10.48633 I 
b, 10.04932 1-0.73340 1-0.63867 1-0.61621 
h. 10.27002 10.93506 10.78662 10.73828 

I b, 10.72559 1-0.81787 1-1.0 1-0.41162 I 
I b. 10.41748 10.27099 I -0.750 I -0.07178 I 
I h. I I 0.27246 I -0.26123 1 0.52246 1 

1-1.0 1-0.87939 I 

5 Discussion 
According to Vaz, Oliveira and Principe (1987), the 

simulation of signals of small duration (1  to 2 seconds) 
requires smaller orders for the ARMA filter. We started the 
GA searching for the coefficients of an ARMA filter using 
an 5-sec EEG segment with predominance of alpha rhythm. 
Results obtained were very bad and were not reported here, 
although successive decreasing of the signal duration 
yielded better results. Then we decided to keep the original 
duration and increase the filter order, thus leading to a 
harder problem for the GA. 

The analysis of table 2 shows that the results obtained 
for the 8” order filter, what is concemed to Ah(, Fl,, and the 
integral, are quite close to those for the original signal. The 
frequency of the largest spectral component is the same and 
relation between A,yc for the simulated signal and the real is 
60/69=0.8695. In the same way, the relation between F,, for 
the simulated signal and the real is 268.25/307=0.8738. 
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Therefore, the simulated signal has a larger average 
amplitude (in time domain) than the real signal, what is not 
much significant. 

6 Conclusions 
The main goal of this work was achieved since the 

coefficients of the ARMA filter were successfully computed 
for the simulation of a very complex signal. 

When examining the results, it should be kept in mind 
the motivation of this work, since they have to be analysed 
per se, due to the difficult of comparison of this technique 
with others for ARMA filters design. 

ARMA filters are useful not only in biological signal 
processing, but also in control systems. The method 
proposed in this work may be of some interest in replacing 
existing methods. 

Further work shall be done including the simulation of 
other types of EEG signals (with predominance of other 
rhythms) and the comparison of the Zetterberg’s method to 
others for EEG simulation as in (Barlow, 1993) and 
(Janeczko and Lopes, 2000). 

Also, we intend to use a more sophisticated fitness 
function that would take into account not only the error 
between the simulated and the real signal as used here, but 
also other objectives. 
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Figure 2: Real and simulated signals in the frequency 
domain. Horizontal axis represents the spectral 
component number and vertical axis the amplitude. 
(a) Spectrum of the real signal. (b) Spectrum of the 
simulated signal with a Sth-order ARMA filter. (c) 
Same, with a 6Ih-order ARMA filter. (d) Same, with a 
7 th-~rder  ARMA filter. (e) Same, with a 81h-order 
ARMA filter. 
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Figure 3: Real and simulated signals in the time domain. Horizontal axis represents the sample number (1 second = 
200 samples) and vertical axis the normalized amplitude. (a) Real signal. (b) Simulated signal with a Sth-order 
ARMA filter. (c) Same, with a 61h-~rder  ARMA filter. (d) Same, with a 71h-order ARMA filter. (e) Same, with a 81h- 

order ARMA filter. 
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