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Abstract- This work presents a classification algorithm 
based on genetic algorithms (GAS) that discovers 
comprehensible IF-THEN rules, in the spirit of data 
mining. The proposed GA has a flexible chromosome 
encoding where each chromosome corresponds to a 
classification rule. Although the number of genes 
(genotype) is fixed, the number of rule conditions 
(phenotype) is variable. The GA also has specific 
mutation operators for this chromosome encoding. The 
algorithm was evaluated on two public domain, real- 
world data sets (on the medical domains of dermatology 
and breast cancer). 

1 Introduction 
This work presents a system based on genetic algorithms 
(GAS) to perform the task of classification. The system is 
evaluated in two medical domains: diagnosis of 
dermatological diseases and prediction of recurrence of 
breast cancer. The use of GAS in classification is an 
attempt to effectively exploit the large search space usually 
associated with classification tasks. The GA presented here 
was designed according to some concepts of data mining 
and knowledge discovery, where the goal is to find not 
only accurate knowledge but also comprehensible 
knowledge [6, 81. Hence, the GA’s individuals (or 
chromosomes) encode IF-THEN classification rules, 
similarly (in form) to the rules discovered by data mining 
algorithms based on the rule induction paradigm. 

This paper is organized as follows. Section 2 briefly 
reviews the basic characteristics of genetic algorithms and 
the classification task (from a data mining viewpoint). 
Section 3 describes in  detail our proposed system. Section 
4 briefly describes the data sets used in the experiments. 
Section 5 discusses the results of the experiments. Section 
6 discusses related work. Finally, section 7 concludes the 
paper. 
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2 An Overview of Classification and Genetic 
Algorithms 

The classification task is one of the most studied in data 
mining. In essence, the problem consists of assigning 
records to one out of a small set of pre-defined classes, by 
discovering some relationship between attributes. Each 
record (henceforth an example) consists of a set of 
predicting attributes and a goal attribute to be predicted 
[ll, 81. A data-mining algorithm is applied to a set of 
training examples, with a known class, to discover rules 
detecting some relationship between the predicting 
attributes and the goal attribute. This relationship is then 
used to predict the class (the value of the goal attribute) of 
examples whose class is unknown. 

The discovered knowledge is usually represented in the 
form of IF-THEN prediction rules, which have the 
advantage of being a high-level, symbolic knowledge 
representation, contributing to the comprehensibility of the 
discovered knowledge. The discovered rules can be 
evaluated according to several criteria, such as the degree 
of confidence in the prediction, classification accuracy rate 
on unknown-class examples, comprehensibility, etc. We 
emphasize that this latter is a crucial criterion in the 
context of data mining. 

Genetic Algorithms (GAS) are a search method that has 
been widely used in applications where the size of the 
search space is very large. In essence, GAS are “search 
algorithms based on the mechanics of natural selection and 
natural genetics” [9]. GAS are inspired on the principle of 
survival of the fittest, where the fittest individuals are 
selected to produce offspring for the next generation. In the 
context of search, individuals are candidate solutions to a 
given search problem. Hence, reproduction of the fittest 
individuals means reproduction of the best current 
candidate solutions. Genetic operators such as selection, 



crossover and mutation generate offspring from the fittest 
individuals. One of the advantages of GAS over 
“traditional” search methods is that the former performs a 
kind of global search using a population of individuals, 
rather than performing a local, hill-climbing search. Global 
search methods are less likely to get trapped into local 
maxima, in comparison with local search methods. 

It is interesting to note that, overall, the knowledge 
discovery paradigm most used in data mining is still rule 
induction. Most of the algorithms in this paradigm perform 
a kind of local search. 

Gene, ... 

3 The Genetic Algorithm 
The GA used in this work was developed based in the 
GALOPPS 3.2 system [lo]. This is a public-domain tool 
that incorporates several features proposed by GA 
researchers and is very portable. The next subsections 
describe several aspects of the proposed algorithm, namely 
individual encoding, genetic operators, and fitness 
function. 

3.1 Individual Encoding 
A chromosome is divided into n genes, where each gene 
corresponds to a condition involving one attribute, and n is 
the number of predicting attributes in the data being mined. 
The genes are positional, i.e. the first gene represents the 
first attribute, the second gene represents the second 
attribute, and so on. Each i-th gene, i=l ..a, is subdivided 
into three fields: weight (W,), operator (0;) and value (V,), 
as shown in figure 1. Each gene corresponds to one 
condition in the IF part of a rule, and the entire 
chromosome (individual) corresponds to the entire IF part 
of the rule. The THEN part does not need to be coded into 
the chromosome, as will be explained later. Therefore, 
henceforth we will refer to the IF part of the rule encoded 
into a chromosome simply as the rule. 

... Gene” 

The field weight (WJ is a real-valued variable taking 
values in the range [O.. 13. This variable indicates whether 
or not the corresponding attribute is present in the rule. 
More precisely, when W, is smaller than a user-defined 
threshold (called Limit) the i-th condition is effectively 
removed from the rule. Therefore, the greater the value of 
the threshold Limit, the smaller the probability that the 
corresponding condition will be present in the rule. We 
used a Limit value of 0.3, so that conditions with a weight 
smaller than or equal to 0.3 were effectively removed from 
the rule. Note that mutations in the field weight can cause 
the corresponding attribute to be removed or re-inserted 
into the rule. 

The field operator (0,) is a variable that indicates the 
relational operator employed in the i-th condition. If 
attribute A ,  is categorical (nominal) this field can contain 
the operators “=“ and “+”. If attribute A ,  is continuous, this 
field can contain the operators “2” and “<“. 

The field value (V,) contains one of the values 
belonging to the domain of attribute A, .  The value V, is 
coded into a binary string, which is properly decoded for 
purposes of fitness evaluation. The number of bits used to 
code V, is proportional to the number of values in the 
domain of attribute A,. 

Note that the above encoding is quite flexible with 
respect to the length of the rules. A “traditional” GA is 
very limited in this aspect, since it can only cope with 
fixed-length rules. In our approach, although each 
chromosome has a fixed length, the genes are “interpreted” 
(based the value of the weight W,) in such a way that the 
individual phenotype (the rule) has a variable length. 
Hence, different individuals correspond to rules with 
different number of conditions. 

3.2 Genetic Operators 
We used conventional genetic operators of selection and 
crossover. More precisely, we used stochastic tournament 
selection with tournament size 3 and two-point crossover, 
with crossover probability = 100%. We also used an elitist 
reproduction strategy, where the best individual of each 
generation was passed unaltered to the next generation. 

We developed three mutation operators tailored for our 
genome representation, namely weight mutation, 
relational-operator mutation and value mutation. Each of 
these operators acts on a different field of a gene - see the 
previous subsection. We used mutation rates of 30% for 
each kind of mutation. 

The weight mutation was developed to modify the 
weight of a rule condition. This operator randomly 
generates a small real-valued number that is then added to 
or subtracted from the current weight of the condition. 
Hence, conditions can be removed or inserted in a rule, as 
the value of the weight field gets smaller or greater than 
the threshold Limit. 

The relational-operator mutation modifies the relational 
operator currently being used in a condition of the rule, by 
replacing it with another one, randomly generated among 
the valid relational operators (depending on whether the 
attribute is categorical or continuous). 

The value mutation modifies the contents of the value 
field, by replacing the current value with another one 
randomly generated. There are two possible cases here. 
First, if the attribute is categorical, this mutation simply 
replaces the current value field with another value 
belonging to the domain of the attribute. Second, if the 
attribute is continuous, the mutation produces a small 
number that is then added to or subtracted from the current 
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contents of the value field. This is implemented in such a 
way that the lower and upper bounds of the domain of the 
attribute are never exceeded. 

3.3 Fitness Function 
The fitness function evaluates the quality of each rule 
(individual). This work uses the fitness function employed 
by [15]. Before we can define the fitness function, it is 
necessary to recall a few basic concepts on classification- 
rule evaluation. When using a rule for classifying an 
example, depending on the class predicted by a rule and on 
the true class of the example, four different types of results 
can 

0 

0 

0 

be observed for the prediction, as follows: 
true positive (tp) - the rule predicts that the patient has 
a given disease and the.patient really have that disease; 
false positive (fp) - the rule predicts that the patient 
has a given disease but the patient does not have it; 
true negative (tn) - the rule predicts that the patient 
does not have a given disease, and indeed the patient 
does not have it; 
false negative (fn) - the rule predicts that the patient 
does not have a given disease but the patient does have 
it. 

Our fitness function combines two indicators commonly 
used in medical domains, namely the sensitivity (Se) and 
the specificity (Sp), defined as follows: 

Se = t p / ( t p  + f n )  

Sp = tn / (tn + f p )  (2) 

Finally, the fitness function used by our system is 
defined as the product of these two indicators, i.e.: 

fitness = Se * Sp (3) 

Therefore, the goal of our system is to maximize both 
the Se and the Sp at the same time, and the product shown 
in  equation (3) provides a good gradient for the function. 

Each run of our GA solves a two-class classification 
problem, where the goal is to predict whether or not the 
patient has a given disease. Therefore, the GA is run at 
least once for each class (value of the goal attribute). For 
instance, supposing that the application domain has 6 
classes, we need to run the GA at least 6 times. In the first 
run the GA would search for rules predicting class 1; in the 
second run it would search for rules predicting class 2, and 
so on. When the GA is searching for rules predicting a 
given class, all other classes are effectively merged into a 
large class, which can be conceptually thought of as 
meaning that the patient does not have the disease 

predicted by the rule. Hence, the above formulas for Se and 
Sp can be applied to problems with any number of classes. 

This characteristic of our GA also explains why it is not 
necessary to encode the class predicted by a rule into the 
chromosome representation, as mentioned in section 3.1. In 
effect, in a given run of the GA all individuals are 
searching for rules predicting the same class. 

4 Data Sets Used in the Experiments 
We did some experiments with two public domain data 
sets, in the medical domains of dermatology and breast 
cancer. These data sets were obtained from the UCI 
(University of California at Irvine) - Machine Learning 
Repository [17]. These data sets have been used 
extensively for classification tasks using different 
paradigms, see, for instance [3] and [5] .  The main 
characteristics of each of these domains are described in 
the next two subsections. 

4.1 Dermatology Data Set 
The differential diagnosis of the disease erythemato- 
squamous is an important problem in dermatology. There 
are six different diagnoses (six classes), and all of them 
share some clinical characteristics of erythema and scaling, 
with few differences. The six classes are: psoriasis, 
seboreic dermatitis, lichen planus, pityriasis rosea, chronic 
dermatitis and pityriasis rubra pilaris. Some characteristics 
are more incident in certain diseases, but they can also 
appear in some stages of development of other diseases, 
making more difficult the diagnosis. Some characteristics 
of the diseases are discussed in [5]. 

This data set contains 366 records, each one with 34 
attributes. All attributes had their values mapped to a four- 
valued graded scale in the range [O ... 31, where 0 indicates 
the lack of the corresponding characteristic and 3 indicates 
a great incidence of that characteristic. Two exceptions are 
the attribute age, which remains with its values expressed 
in years, and the attribute family history, which takes on 
the value 1 when the disease has been observed in the 
family of the patient and 0 otherwise. 

4.2 Breast Cancer Data Set 
Breast cancer re-occurs in up to 30% of the patients that 
undergo a breast cancer surgery [3]. This data set contains 
286 records, each with 9 attributes, and the goal is to 
determine the patients for whom the cancer will re-occur. 
Hence, there are only two classes, namely no-recurrence- 
events and recurrence-events. All attributes are categorical. 
More detailed information about this data set can be found 
in [3]. 
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5 Computational Results 
Each GA run consisted of a population of 50 individuals 
evolving during 50 generations. The set of parameters used 
for the genetic operators (crossover and mutation rates, 
etc.) were as defined in section 3. 

Each data set was randomly partitioned into two parts, 
with 2/3 of the records used for training and 1/3 of the 
record used for testing the quality of the discovered rules. 
As usual in the literature, this partition was done in such a 
way that the proportion of examples belonging to each 
class (the relative frequency of the class) was kept the 
same in both the training and the test set. Since the current 
version of our algorithm cannot cope with missing values, 
in each data set the few records that contained missing 
values were simply removed, for the purposes of the 
experiments reported below. 

5.1 Results for the Dermatology Data Set 
Table 1 presents the final 6 rules discovered by the GA - 
one rule for each class. For each class, the GA was run 
three times, varying the random seed used to generate the 
initial population. The best rule of the three runs, according 
to its fitness value measured on the training set, was 
selected as the rule predicting that class (this is the rule 
shown in Table 1). Once the 6 rules were selected, they 
were evaluated on a separate test set, as mentioned above. 
Note that the set of rules used for classification also 
includes a “default” rule, i.e. a rule with no conditions 
which is automatically applied when no other rule has its 
conditions satisfied by the example to be classified. This 
rule simply predicts class C1, which is the “majority” class 
- i.e. the most frequent class in the training set. 

Table 1. Discovered Rule Set for the Dermatology Data Set Fitness iC Rule - 
1 IF (inv-nodes)<(9-11) AND 0,564-0,365 

(deg-mu1ig)R AND 
(irrudiut)=(no) 

(tumor-size)#(45-49) AND 
(deg -mu1 i,q)>2 

2 IF (menopuuse)2(ge40) AND 0,497-0,393 

Rule 
IF (clubbing of the rete ridges)2l AND 

(perifolliculur pumkerutosis)=O 

(vucuolisution and d u m g e  of busul 
luyer)<l AND 
(spongiosis)>2 

IF(knee und elbow involvement)=O AND 
(fumily history)=0 AND 
(ucunthosis)<3 AND 
(focul hypergrunu1osis)d AND 
(spongiosis)>l AND 
(in fluinmutory monolucleur infltrate)>l 

IF (melunin incontinence)<l AND 
(fibrosis of the pupillary demis)#O AND 
(munro microubcess)=0 
IF (follicular pupules)>l AND 

IF (koebner phenomenon)=0 AND 

IF (bund-like infiltrute)22 

(perifolliculur parukerutosis)>l 

For each rule in Table 1 the third column shows two 
values, namely the fitness of the rule - computed by 
equation ( 3 )  - in the training set and in the test set, 
respectively. One can see that all the rules discovered from 
the training data generalize well for examples in the test 
set. In most cases the fitness in the test set is nearly equal 
to the fitness in the training set. The only exception is the 
rule for class C4, where the fitness of 86% in the training 
set dropped to a fitness of 78.3% in the test set. 

The fitness values reported in Table 1 are useful for 
evaluating the performance of each rule separately. 
However, it is also important to evaluate the performance 
of the rule set as a whole. As usual in the literature, this 
evaluation was done by measuring the accuracy rate on the 
test set, i.e. the ratio of the number of examples correctly 
classified over the total number of examples in the test set. 
The accuracy rate of the rule set was 95% (out of 119 
examples, 113 were correctly classified). 

We also observed that in 5 out of the 6 classes the same 
rule conditions were discovered by the three GA runs for 
that class. Since the different random seeds could lead to 
very different results across the three runs, we believe that 
the algorithm has reliably identified the main predicting 
attributes for each class. However, this conclusion needs to 
be validated by more experiments. 

5.2 Results for the Breast Cancer Data Set 
Table 2 shows the final two rules discovered by the GA - 
one rule for each class. We followed the same procedure as 
described in section 5.1, running the GA three times for 
each class. 

Fitness 
0,973-0,973 

0,855-0,855 

1,000-0,979 
0,860-0,783 

1,000- 1,000 

1,000- 1,000 

Table 2. Discovered Rule Set for the Breast Cancer Data Set 

For each rule in Table 2 it is shown two values, namely 
the fitness of the rule - computed by equation 3 - in the 
training set and in the test set, respectively. This time, 
however, the rules discovered from the training set did not 
generalize so well for examples of the test set. This seems 
to be due to the fact that this is a considerably more 
difficult classification problem, in comparison with the 
dermatology data set, and the data is quite noisy. 

Anyway, it is interesting to evaluate the performance of 
the set of discovered rules as a whole, by measuring the 
accuracy rate, as done in the previous section. The 
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accuracy rate of the discovered rule set was 67% (out of 92 
examples, 62 were correctly classified). 

Similarly to the results of section 5.1, for each class the 
same rule conditions were discovered by the three GA runs 
for that class, showing that the GA converged to the same 
best rule despite variations in the random seed. 

6 Related Work 
Several GAS designed for discovering some kind of 
comprehensible classification rules have been proposed in 
the literature. We briefly review some of them below. 

GIL [ 121 uses several generalizatiodspecialization 
operators proposed by [16] to extend the genetic operators 
of conventional GA, creating a knowledge- intensive GA 
for the classification task. GIL follows the Pittsburgh’s 
approach for rule learning, where each individual of the 
population corresponds to a set of rules. GABIL [4] also 
follows the Pittsburgh’s approach and also suggests a few 
task-specific genetic operators. Yet another project 
following the Pittsburgh’s approach is HDPDCS [19]. This 
system was explicitly designed for both classification and 
feature extraction from high dimensionality data sets. 

A major difference between our system and the above 
projects is that we do not follow the Pittsburgh approach. 
In our system, an individual corresponds to a single rule, 
which at least tends to be more computationally efficient. 
This is usually known as the Michigan approach. 

REGAL learns first-order-logic (FOL) rules [18]. The 
discovery of FOL rules is an interesting feature shared by 
few GAS, but in the case of REGAL it requires that the 
user provides a kind of template of the logical formula to 
be learned. This requirement reduces the autonomy of the 
system, which can be considered a drawback in the context 
of data mining. Several parallel GAS are descendant from 
REGAL, e.g. the G-NET system [l]. 

SIAOl [2] also learns FOL class descriptions, but it 
does not need a user-specified formula template. Instead, it 
adapts the technique of generalizing a seed example to 
learn FOL classification rules [16]. From a data-mining 
viewpoint, it seems that the main drawback of SIAOl is 
that this kind of generalization technique is quite 
computationally expensive, making i t  difficult to apply 
SIAOl to large databases. 

Both REGAL and SIAOl are very different from our 
system, since the latter discovers conventional 
propositional logic rules, rather than FOL ones. 

A system somewhat more similar to ours is EDRL [13]. 
This system also requires one run of the GA for 
discovering a rule for each class. In addition, in this system 
each chromosome is represented as a conjunction of 
conditions of a single rule, similarly to our system. 
However, this system cannot cope with continuous 
attributes, i.e. it assumes that continuous attributes have 

been previously discretized as a pre-processing step. Our 
system does not have this limitation, i.e. it copes with both 
categorical and continuous attributes. It chould be noted, 
however, that a more recent version of EDRL copes with 
continuous attributes [14]. 

Another GA for discovering rules following the 
approach of associating a chromosome with a conjunction 
of conditions of a single rule is described in [7]. However, 
this system does not address the classification task. Rather, 
i t  addresses the dependence modeling (or generalized rule 
induction) task. The latter can be regarded as a 
generalization of the former, since different rules can 
predict different goal attributes, rather than a single goal 
(or class) attribute. 

7 Conclusions and Future Work 
The preliminary results reported in this paper are 
promising, and allow us to conclude that our chromosome 
encoding and its associated rule set representation are a 
good alternative for extracting a small set of 
comprehensible rules, which is important in the context of 
data mining. 

The accuracy rates achieved by our GA in the 
dermatology data set (95%) and in the breast cancer data 
set (67%) are similar to the ones reported by other 
researchers in these data sets. However, our GA seems to 
be particularly effective in finding a concise set of 
comprehensible rules, since (by design) it discovers only a 
single rule for each class. Other data mining algorithms 
often discover several rules for a single class, which makes 
it difficult for the user to understand the numerous 
discovered rules. 

Future work should consist of more experiments with 
other data sets, as well as more elaborated experiments to 
optimize several parameters of the algorithm, such as 
mutation rates, the Limit threshold for the weight field, etc. 
(Recall that the results of this paper were achieved without 
any serious attempt to optimize the parameters of the GA.) 

Acknowledgments 

This breast cancer domain was obtained from the 
University Medical Centre, Institute of Oncology, 
Ljubljana, Yugoslavia. Thanks go to M. Zwitter and M. 
Soklic for providing the data. 

Thanks to H. A. Guvenir from Bilkent University and 
N. Ilter from Gazi University, Sukara, Turkey, for 
providing the dermatology data set. 

Bibliography 

[l] Anglano, C.; Giordana, A.; Lo Bello, G.; Saitta, L. A 
network genetic algorithm for concept learning. Proc. 
Th Int. Con$ Genetic Algorithms, Q. 434-441, Morgan 

809 



Kaufmann, 1997. 
[2] Augier, S.; Venturini, G.; Kodratoff, Y. Learning first 

order logic rules with a genetic algorithm. Proc. 1" 
Int. Con5 Knowledge Discovery & Data Mining, p. 
21-26. Montreal, Canada, 1995. 

[3] Clark, P., Niblett, T. Induction in Noisy Domains. In: 
Progress in Machine Learning (from the Proceedings 
of the 2"d European Working Session on Learning), p. 
11-30, Sigma Press, 1987. 

[4] DeJong, K.A.; Spears, W.M.; Gordon, D.F. Using 
genetic algorithms for concept learning. Machine 
Learning, v. 13, p. 161-188, 1993. 

[5] Demiroz, G.; Govenir, H.A.; Ilter N. Leaming 
differential diagnosis of erythemato-squamous 
diseases using voting feature. Artificial Intelligence in 
Medicine, v. 13, p. 147-165, 1998. 

[6] Fayyad, V.M.; Piatetsky-Shapiro, C.; Smyth, P. From 
data mining to knowledge discovery: an overview. 
Fayyad, V.M. et al. (Eds.) Advances in knowledge 
Discovery and Data Mining, p. 1-34, AAAIIMIT 
Press, 1996. 

[7] Freitas, A.A. A genetic algorithm for generalized rule 
induction. R. Roy et al. (Eds.) Advances in Soft 
Computing - Engineering Design and 
Manufacturing, p. 340-353. Springer-Verlag, 1999. 

[8] Freitas, A.A.; Lavington, S.H. Mining Very Large 
Databases with Parallel Processing, London: Kluwer 
Academic Publishers, 1998. 

[9] Goldberg, D.E. Genetic Algorithms in Search, 
Optimization and Machine Leaming. Reading: 
Addison-Wesley, 1989. 

[lo] Goodman, E.D. An Introduction to GALLOPS - The 
Genetic Algorithms Optimized for Portabilio and 
Parallelism System. East Lansing, USA: Genetic 
Algorithms Research and Applications Group 
(GARAGe), Department of Computer Science, 
Michigan State University, 1996. 

[ l l ]  Hand, D. Construction and Assessment i f  
Classification Rules. Chichester: John Wiley & Sons, 
1997. 

[ 121 Janikow, C.Z. A knowledge-intensive genetic 
algorithm for supervised learning. Machine Learning, 

[13] Kwedlo, W.; Kretowski, M. Discovering of decision 
rules from databases: an evolutionary approach. 
Principles of Data Mining and Knowledge Discovery. 
Lecture Notes in Artij'icial Intelligence 1510, p. 370- 
378, 1998. 

[14] Kwedlo, W.; Kretowski, M. An Evolutionary 
algorithm using multivariate discretization for 
decision rule induction. Principles of Data Mining 
and Knowledge Discovery - Lecture Notes in 
Artificial Intelligence 1704, p. 392-397, 1999. 

[151 Lopes, H.S.; Coutinho, M.S.; Lima, W.C. An 

V. 13, p. 189-228, 1993. 

evolutionary approach to simulate cognitive feedback 
learning in medical domain. In: Sanchez, E., Shibata, 
T., Zadeh, L.A. (Eds) Genetic Algorithms and Fuuy 
Logic Systems. Singapore: World Scientific, p. 193- 
207, 1997. 

[16] Michalski, R.W. A theory and methodology of 
inductive learning. Artificial Intelligence, v. 20, p. 

[17] Murphy, P. M.; Aha, D. W. UCI Repository of 
Machine Learning databases. [http://www.ics. 
uci.edu/-mlearn/MLRepository.html]. Irvine, CA: 
University of California, Departament of Information 
and Computer Science, 1994. 

[l8] Neri, F.; Giordana, A. A parallel genetic algorithm 
for concept learning. Proc. gh Int. Con5 Genetic 
Algorithms, p. 436-443, 1995. 

[19] Pei, M.; Goodman, E.D.; Punch 111, W.F. Pattern 
discovery from data using genetic algorithms. Proc. 
1" Pacifc-Asia Con5 Knowledge Discovery and Data 
Mining, 1997. 

111-161, 1983. 

8 10 

http://www.ics

