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Abstract- This work presents a classification algorithm
based on genetic algorithms (GAs) that discovers
comprehensible IF-THEN rules, in the spirit of data
mining. The proposed GA has a flexible chromosome
encoding where each chromosome corresponds to a
classification rule. Although the number of genes
(genotype) is fixed, the number of rule conditions
(phenotype) is variable. The GA also has specific
mutation operators for this chromosome encoding. The
algorithm was evaluated on two public domain, real-
world data sets (on the medical domains of dermatology
and breast cancer).

1 Introduction

This work presents a system based on genetic algorithms
(GAs) to perform the task of classification. The system is
evaluated in two medical domains: diagnosis of
dermatological diseases and prediction of recurrence of
breast cancer. The use of GAs in classification is an
attempt to effectively exploit the large search space usually
associated with classification tasks. The GA presented here
was designed according to some concepts of data mining
and knowledge discovery, where the goal is to find not
only accurate knowledge but also comprehensible
knowledge [6, 8]. Hence, the GA’s individuals (or
chromosomes) encode IF-THEN classification rules,
similarly (in form) to the rules discovered by data mining
algorithms based on the rule induction paradigm.

This paper is organized as follows. Section 2 briefly
reviews the basic characteristics of genetic algorithms and
the classification task (from a data mining viewpoint).
Section 3 describes in detail our proposed system. Section
4 briefly describes the data sets used in the experiments.
Section 5 discusses the results of the experiments. Section
6 discusses related work. Finally, section 7 concludes the
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2 An Overview of Classification and Genetic
Algorithms

The classification task is one of the most studied in data
mining. In essence, the problem consists of assigning
records 1o one out of a small set of pre-defined classes, by
discovering some relationship between attributes. Each
record (henceforth an example) consists of a set of
predicting attributes and a goal attribute to be predicted
[11, 8]. A data-mining algorithm is applied to a set of
training examples, with a known class, to discover rules
detecting some relationship between the predicting
attributes and the goal attribute. This relationship is then
used to predict the class (the value of the goal attribute) of
examples whose class is unknown.

The discovered knowledge is usually represented in the
form of IF-THEN prediction rules, which have the
advantage of being a high-level, symbolic knowledge
representation, contributing to the comprehensibility of the
discovered knowledge. The discovered rules can be
evaluated according to several criteria, such as the degree
of confidence in the prediction, classification accuracy rate
on unknown-class examples, comprehensibility, etc. We
emphasize that this latter is a crucial criterion in the
context of data mining.

Genetic Algorithms (GAs) are a search method that has
been widely used in applications where the size of the
search space is very large. In essence, GAs are “search
algorithms based on the mechanics of natural selection and
natural genetics” [9]. GAs are inspired on the principle of
survival of the fittest, where the fittest individuals are
selected to produce offspring for the next generation. In the
context of search, individuals are candidate solutions 10 a
given search problem. Hence, reproduction of the fittest
individuals means reproduction of the best current
candidate solutions. Genetic operators such as selection,



crossover and mutation generate offspring from the fittest
individuals. One of the advantages of GAs over
“traditional” search methods is that the former performs a
kind of global search using a population of individuals,
rather than performing a local, hill-climbing search. Global
search methods are less likely to get trapped into local
maxima, in comparison with local search methods.

It is interesting to note that, overall, the knowledge
discovery paradigm most used in data mining is still rule
induction. Most of the algorithms in this paradigm perform
a kind of local search.

3 The Genetic Algorithm

The GA used in this work was developed based in the
GALOPPS 3.2 system [10]. This is a public-domain tool
that incorporates several features proposed by GA
researchers and is very portable. The next subsections
describe several aspects of the proposed algorithm, namely
individual encoding, genetic operators, and fitness
function.

3.1 Individual Encoding

A chromosome is divided into n genes, where each gene
corresponds to a condition involving one attribute, and n is
the number of predicting attributes in the data being mined.
The genes are positional, i.e. the first gene represents the
first attribute, the second gene represents the second
attribute, and so on. Each i-th gene, i=1...n, is subdivided
into three fields: weight (W), operator (O, and value (V),
as shown in figure 1. Each gene corresponds to one
condition in the IF part of a rule, and the entire
chromosome (individual) corresponds to the entire IF part
of the rule. The THEN part does not need to be coded into
the chromosome, as will be explained later. Therefore,
henceforth we will refer to the IF part of the rule encoded
into a chromosome simply as the rule.
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Fig. 1. Representation of a chromosome

The field weight (W) is a real-valued variable taking
values in the range [0..1]. This variable indicates whether
or not the corresponding attribute is present in the rule.
More precisely, when W, is smaller than a user-defined
threshold (called Limif) the i-th condition is effectively
removed from the rule. Therefore, the greater the value of
the threshold Limit, the smaller the probability that the
corresponding condition will be present in the rule. We
used a Limit value of 0.3, so that conditions with a weight
smaller than or equal to 0.3 were effectively removed from
the rule. Note that mutations in the field weight can cause
the corresponding attribute to be removed or re-inserted
into the rule.
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The field operator (O) is a variable that indicates the
relational operator employed in the i-th condition. If
attribute A, is categorical (nominal) this field can contain
the operators “="“ and “#”. If attribute A, is continuous, this
field can contain the operators “>” and “<“.

The field value (V) contains one of the values
belonging to the domain of attribute A, The value V, is
coded into a binary string, which is properly decoded for
purposes of fitness evaluation. The number of bits used to
code V, is proportional to the number of values in the
domain of attribute A,

Note that the above encoding is quite flexible with
respect to the length of the rules. A “traditional” GA is
very limited in this aspect, since it can only cope with
fixed-length rules. In our approach, although each
chromosome has a fixed length, the genes are “interpreted”
(based the value of the weight W) in such a way that the
individual phenotype (the rule) has a variable length.
Hence, different individuals correspond to rules with
different number of conditions.

3.2 Genetic Operators

We used conventional genetic operators of selection and
crossover. More precisely, we used stochastic tournament
selection with tournament size 3 and two-point crossover,
with crossover probability = 100%. We also used an elitist
reproduction strategy, where the best individual of each
generation was passed unaltered to the next generation.

We developed three mutation operators tailored for our
genome representation, namely weight mutation,
relational-operator mutation and value mutation. Each of
these operators acts on a different field of a gene - see the
previous subsection. We used mutation rates of 30% for
each kind of mutation.

The weight mutation was developed to modify the
weight of a rule condition. This operator randomly
generates a small real-valued number that is then added to
or subtracted from the current weight of the condition.
Hence, conditions can be removed or inserted in a rule, as
the value of the weight field gets smaller or greater than
the threshold Limit.

The relational-operator mutation modifies the relational
operator currently being used in a condition of the rule, by
replacing it with another one, randomly generated among
the valid relational operators (depending on whether the
attribute is categorical or continuous).

The value mutation modifies the contents of the value
field, by replacing the current value with another one
randomly generated. There are two possible cases here.
First, if the attribute is categorical, this mutation simply
replaces the current value field with another value
belonging to the domain of the attribute. Second, if the
attribute is continuous, the mutation produces a small
number that is then added to or subtracted from the current



contents of the value field. This is implemented in such a
way that the lower and upper bounds of the domain of the
attribute are never exceeded.

3.3 Fitness Function

The fitness function evaluates the quality of each rule
(individual). This work uses the fitness function employed
by [15]. Before we can define the fitness function, it is
necessary to recall a few basic concepts on classification-
rule evaluation. When using a rule for classifying an
example, depending on the class predicted by a rule and on
the true class of the example, four different types of results
can be observed for the prediction, as follows:

® true positive (tp) - the rule predicts that the patient has
a given disease and the patient really have that disease;

¢ false positive (fp) — the rule predicts that the patient
has a given disease but the patient does not have it;

¢ true negative (in) - the rule predicts that the patient
does not have a given disease, and indeed the patient
does not have it;

o false negative (fn) - the rule predicts that the patient
does not have a given disease but the patient does have
1t.

Our fitness function combines two indicators commonly
used in medical domains, namely the sensitivity (Se) and
the specificity (Sp), defined as follows:

Se=1tp/(tp + fn) a

Sp=tn/(tn+fp) 2

Finally, the fitness function used by our system is
defined as the product of these two indicators, i.c.:

fitness = Se * Sp €))

Therefore, the goal of our system is to maximize both
the Se and the Sp at the same time, and the product shown
in equation (3) provides a good gradient for the function.

Each run of our GA solves a two-class classification
problem, where the goal is to predict whether or not the
patient has a given disease. Therefore, the GA is run at
least once for each class (value of the goal attribute). For
stance, supposing that the application domain has 6
classes, we need to run the GA at least 6 times. In the first
run the GA would search for rules predicting class 1; in the
second run it would search for rules predicting class 2, and
so on. When the GA is searching for rules predicting a
given class, all other classes are effectively merged into a
large class, which can be conceptually thought of as
meaning that the patient does not have the disease
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predicted by the rule. Hence, the above formulas for Se and
Sp can be applied to problems with any number of classes.

This characteristic of our GA also explains why it is not
necessary to encode the class predicted by a rule into the
chromosome representation, as mentioned in section 3.1. In
effect, in a given run of the GA all individuals are
searching for rules predicting the same class.

4 Data Sets Used in the Experiments

We did some experiments with two public domain data
sets, in the medical domains of dermatology and breast
cancer. These data sets were obtained from the UCI
(University of California at Irvine) - Machine Learning
Repository [17]. These data sets have been used
extensively for classification tasks using different
paradigms, see, for instance [3] and [5]. The main
characteristics of each of these domains are described in
the next two subsections.

4.1 Dermatology Data Set

The differential diagnosis of the disease erythemato-
squamous is an important problem in dermatology. There
are six different diagnoses (six classes), and all of them
share some clinical characteristics of erythema and scaling,
with few differences. The six classes are: psoriasis,
seboreic dermatitis, lichen planus, pityriasis rosea, chronic
dermatitis and pityriasis rubra pilaris. Some characteristics
are more incident in certain diseases, but they can also
appear in some stages of development of other diseases,
making more difficult the diagnosis. Some characteristics
of the diseases are discussed in [5].

This data set contains 366 records, each one with 34
attributes. All attributes had their values mapped to a four-
valued graded scale in the range [0...3], where O indicates
the lack of the corresponding characteristic and 3 indicates
a great incidence of that characteristic. Two exceptions are
the attribute age, which remains with its values expressed
in years, and the attribute family history, which takes on
the value 1 when the disease has been observed in the
family of the patient and 0 otherwise.

4.2 Breast Cancer Data Set

Breast cancer re-occurs in up to 30% of the patients that
undergo a breast cancer surgery [3]. This data set contains
286 records, each with 9 attributes, and the goal is to
determine the patients for whom the cancer will re-occur.
Hence, there are only two classes, namely no-recurrence-
events and recurrence-events. All attributes are categorical.
More detailed information about this data set can be found
in [3].



5 Computational Results

Each GA run consisted of a population of 50 individuals
evolving during 50 generations. The set of parameters used
for the genetic operators (crossover and mutation rates,
etc.) were as defined in section 3.

Each data set was randomly partitioned into two parts,
with 2/3 of the records used for training and 1/3 of the
record used for testing the quality of the discovered rules.
As usual in the literature, this partition was done in such a
way that the proportion of examples belonging to each
class (the relative frequency of the class) was kept the
same in both the training and the test set. Since the current
version of our algorithm cannot cope with missing values,
in each data set the few records that contained missing
values were simply removed, for the purposes of the
experiments reported below. '

5.1 Results for the Dermatology Data Set

Table 1 presents the final 6 rules discovered by the GA -
one rule for each class. For each class, the GA was run
three times, varying the random seed used to generate the
initial population. The best rule of the three runs, according
to its fitness value measured on the training set, was
selected as the rule predicting that class (this is the rule
shown in Table 1). Once the 6 rules were selected, they
were evaluated on a separate test set, as mentioned above.
Note that the set of rules used for classification also
includes a “default” rule, i.e. a rule with no conditions
which is automatically applied when no other rule has its
conditions satisfied by the example to be classified. This
rule simply predicts class C1, which is the “majority” class
- i.e. the most frequent class in the training set.

Table 1. Discovered Rule Set for the Dermatology Data Set

C
1

Fitness
0,973-0,973

Rule
IF (clubbing of the rete ridges)>1 AND
(perifollicular parakeratosis)=0
IF (koebner phenomenon)=0 AND
(vacuolisation und damage of basal
layer)<l AND
(spongiosis)>2
IF (band-like infiltrate)2>2
IF(knee and elbow involvement)=0 AND
(fumily history)=0 AND
(acanthosis)<3 AND
(focal hypergranulosis)<2 AND
(spongiosis)21 AND
(inflammatory monoluclear infiltrate)>1
IF (melunin incontinence)<1 AND
(fibrosis of the papillary dermis)#) AND
(munro microabcess)=0
IF (follicular papules)>21 AND
(perifollicular parakeratosis)>1

0,855-0,855

w

1,000-0,979
0,860-0,783

1,000-1,000

1,000-1,000
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For each rule in Table 1 the third column shows two
values, namely the fitness of the rule - computed by
equation (3) - in the training set and in the test set,
respectively. One can see that all the rules discovered from
the training data generalize well for examples in the test
set. In most cases the fitness in the test set is nearly equal
to the fitness in the training set. The only exception is the
rule for class C4, where the fitness of 86% in the training
set dropped to a fitness of 78.3% in the test set.

The fitness values reported in Table 1 are useful for
evaluating the performance of each rule separately.
However, it is also important to evaluate the performance
of the rule set as a whole. As usual in the literature, this
evaluation was done by measuring the accuracy rate on the
test set, i.e. the ratio of the number of examples correctly
classified over the total number of examples in the test set.
The accuracy rate of the rule set was 95% (out of 119
examples, 113 were correctly classified).

We also observed that in 5 out of the 6 classes the same
rule conditions were discovered by the three GA runs for
that class. Since the different random seeds could lead to
very different results across the three runs, we believe that
the algorithm has reliably identified the main predicting
attributes for each class. However, this conclusion needs to
be validated by more experiments.

5.2 Results for the Breast Cancer Data Set

Table 2 shows the final two rules discovered by the GA -
one rule for each class. We followed the same procedure as
described in section 5.1, running the GA three times for
each class.

Table 2. Discovered Rule Set for the Breast Cancer Data Set

C | Rule

IF (inv-nodes)<(9-11) AND
(deg-malig)<2 AND
(irradiat)=(no)

IF (menopause)>(ge40) AND
(tumor-size)#(45-49) AND
(deg-malig)>2

Fitness
0,564-0,365

—

0,497-0,393

For each rule in Table 2 it is shown two values, namely
the fitness of the rule - computed by equation 3 - in the
training set and in the test set, respectively. This time,
however, the rules discovered from the training set did not
generalize so well for examples of the test set. This seems
to be due to the fact that this is a considerably more
difficult classification problem, in comparison with the
dermatology data set, and the data is quite noisy.

Anyway, it is interesting to evaluate the performance of
the set of discovered rules as a whole, by measuring the
accuracy rate, as done in the previous section. The



accuracy rate of the discovered rule set was 67% (out of 92
examples, 62 were correctly classified).

Similarly to the results of section 5.1, for each class the
same rule conditions were discovered by the three GA runs
for that class, showing that the GA converged to the same
best rule despite variations in the random seed.

6 Related Work

Several GAs designed for discovering some kind of
comprehensible classification rules have been proposed in
the literature. We briefly review some of them below.

GIL [12] uses several generalization/specialization
operators proposed by [16] to extend the genetic operators
of conventional GA, creating a knowledge- intensive GA
for the classification task. GIL follows the Pittsburgh’s
approach for rule learning, where each individual of the
population corresponds to a set of rules. GABIL [4] also
follows the Pittsburgh’s approach and also suggests a few
task-specific genetic operators. Yet another project
following the Pittsburgh’s approach is HDPDCS [19]. This
system was explicitly designed for both classification and
feature extraction from high dimensionality data sets.

A major difference between our system and the above
projects is that we do not follow the Pittsburgh approach.
In our system, an individual corresponds to a single rule,
which at least tends to be more computationally efficient.
This is usually known as the Michigan approach.

REGAL learns first-order-logic (FOL) rules [18]. The
discovery of FOL rules is an interesting feature shared by
few GAs, but in the case of REGAL it requires that the
user provides a kind of template of the logical formula to
be learned. This requirement reduces the autonomy of the
system, which can be considered a drawback in the context
of data mining. Several parallel GAs are descendant from
REGAL, ¢.g. the G-NET system [1].

SIAO1 [2] also learns FOL class descriptions, but it
does not need a user-specified formula template. Instead, it
adapts the technique of generalizing a seed example to
learn FOL classification rules [16]. From a data-mining
viewpoint, it seems that the main drawback of SIAO1 is
that this kind of generalization technique is quite
computationally expensive, making it difficult to apply
SIAOL1 to large databases.

Both REGAL and SIAO1 are very different from our
system, since the latter discovers conventional
propositional logic rules, rather than FOL ones.

A system somewhat more similar to ours is EDRL [13].
This system also requires one run of the GA for
discovering a rule for each class. In addition, in this system
each chromosome is represented as a conjunction of
conditions of a single rule, similarly to our system.
However, this system cannot cope with continuous
attributes, i.e. it assumes that continuous attributes have
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been previously discretized as a pre-processing step. Our
system does not have this limitation, i.e. it copes with both
categorical and continuous attributes. It chould be noted,
however, that a more recent version of EDRL copes with
continuous attributes [14].

Another GA for discovering rules following the
approach of associating a chromosome with a conjunction
of conditions of a single rule is described in [7]. However,
this system does not address the classification task. Rather,
it addresses the dependence modeling (or generalized rule
induction) task. The latter can be regarded as a
generalization of the former, since different rules can
predict different goal attributes, rather than a single goal
(or class) attribute.

7 Conclusions and Future Work

The preliminary results reported in this paper are
promising, and allow us to conclude that our chromosome
encoding and its associated rule set representation are a
good alternative for extracting a small set of
comprehensible rules, which is important in the context of
data mining.

The accuracy rates achieved by our GA in the
dermatology data set (95%) and in the breast cancer data
set (67%) are similar to the ones reported by other
researchers in these data sets. However, our GA seems to
be particularly effective in finding a concise set of
comprehensible rules, since (by design) it discovers only a
single rule for each class. Other data mining algorithms
often discover several rules for a single class, which makes
it difficult for the user to understand the numerous
discovered rules.

Future work should consist of more experiments with
other data sets, as well as more elaborated experiments to
optimize several parameters of the algorithm, such as
mutation rates, the Limit threshold for the weight field, etc.
(Recall that the results of this paper were achieved without
any serious attempt to optimize the parameters of the GA.)
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