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ABSTRACT
The objective of this work is the detection of the non-averaged movement-
related desynchronization (MRD) of the mu rhythm of human EEG. The MRD
was produced in the contralateral sensorimotor cortex by means of two
movement tasks. After amplifying and filtering, the time response of the mu
band spectrum of a EEG lead was computed with the FFT and used as
predicates for training and testing a LVQ neural network classifier. The
performance was measured by the geometric mean of the sensibility and
specificity indexes, calculated for every training epoch over test data. The best
detection performance was 88% for the single movement task and 78% for
repetition of movements, with an average of 66% for both tasks. Results
suggests further use of this methodology for EEG pattern recognition.

INTRODUCTION
Among the several technologies developed in the last decades to aid the

physically handicapped people, those that explore the electrical signals produced
by the human body are the most outstanding (LUSTED and KNAPP, 1996). One
of these approaches is the electroencephalographic-based communication,
applied to the construction of Brain-Computer Interface (BCI) systems.

A BCI system aims at recognizing patterns in electroencephalographic
(EEG) signals produced either by visual stimuli (SUTTER, 1992), specific
mental activities (ANDERSON et al., 1998), movements of limbs (NASHMI et
al., 1994) or imagination of movements (SCHOLOEGL et al., 1997). Further,
patterns detected can be applied to the construction of an “alphabet” of
commands, which, in turn,  can be used to control wheel chairs, prosthetic or
keyboards and devices for computer accessibility (LUSTED et al., 1996).

The movement of a limb produces changes in the EEG signal, specially in
those taken in the contralateral sensorimotor cortex. Movement-Related
Desynchronization (MRD) is an specific pattern that can be observed in the mu
band (8-12 Hz) of the EEG leads taken in the sensorimotor region
(PFURTSCHELLER et al., 1994; PREGENZER and PFURTCHELLER, 1999).
In this context, the main objective of this work is the development of a classifier
system capable of distinguishing the presence of MRD from the background
EEG activity and, therefore, identifying a limb movement.

Experiments were conducted in such a way to evaluate two different ways
of producing MRDs, using tasks that include the movement of the right hand. In
the first task, a trial consisted of a single movement of the wrist, upward and



downward. The second task was the repetition of the same movement during a
given time.

The classifier system used in this work is the Kohonen Learning Vector
Quantization (LVQ) neural network (KOHONEN, 1997). The technique used
here will be further applied to implement a complete BCI system.

METHODOLOGY
The EEG was collected from the scalp of volunteers using electrodes near

the C3 lead (according to the International Federation 10/20 system). The first
electrode (C3a) was put 25 mm ahead of C3 and the second (C3p), the same
distance before. A differential amplifier (gain 30,000 V/V) also filters the input
EEG in the band 8-100 Hz. The sampling rate was 1,280 Hz, with 16 bits of
resolution.

In a given signal collection session, the same task was executed in all trials
(single movement or repetition). At least 50 valid trials, lasting 20 seconds each,
were collected from each volunteer. Valid trials were considered those which no
artifacts visually detected.

For each task, volunteers were guided  by a sequence of events presented on
the screen of a personal computer. For the first task (single movement), an arrow
was presented in t=6s to indicate that the movement should start immediately.
For the second task, the volunteer should start the movements when an arrow
was presented in t=11s. This arrow was presented again 8 times in intervals of 1
second. All trials had an overall duration of 20 seconds.

In all sessions, the volunteers were sat down comfortably in a reclined
chair, lights were turned off and the room temperature was lower than 25 oC.
Volunteers should stay mentally and physically relaxed but awaked, staring at
the computer screen.

The movement of the hand was upward and downward turning around the
wrist. The task should be completed between 0.4-0.9 second, with the help of a
visual timing in the screen. All volunteers were submitted to a previous training
session in order to get familiarized with the procedure.

Thirteen volunteers (12 male and 1 female) took part in the experiments.
They were all right-handed and had ages between 22 and 37 years old.

SIGNAL PROCESSING
Signals collected from the volunteers were processed offline. Initially, the

raw signal was digitally filtered by a low-pass (128 Hz) Hanning window 128th-
order FIR filter. After, the sampled signal was decimated, reducing the initial
sampling rate (1280 Hz) to 256 Hz. Next, the mu band was extracted using a
digital 64th-order band-pass FIR filter, in the range 7-13 Hz. Using this filtered
signal, the time response of the mu band spectrum was calculated at intervals of
0.125 second (32 samples) using a 1-second window (256 samples). For each
window, the FFT was computed. Therefore, the k-th time response y(k) of the
mu band spectrum is defined as the average of the absolute value of the
spectrum components between 8-12 Hz, taken for the k-th window of a given



trial. In this way, the time response of the mu band was computed for every trial
of each session with the volunteers.

In Fig. 1 it is shown the time response of the mu band spectrum taken as the
average by session for two different volunteers. In this figure, it is seen the
presence of a valley between t≈6s and t≈8s (for the single movement task) for
both volunteers. This valley corresponds to the presence of the MRD of the mu
band associated to the movement. In the sessions of multiple movements, for the
first volunteer, the valley can be seen after t≈11s and persists until the last
movement in t≈19s. For the second volunteer, the MRD disappeared soon,
probably because he was too relaxed during that session, incapable of repeating
the movements synchronously.

Figure 1 – Averaged time response of the mu band spectrum. Left: volunteer #1;
right: volunteer #2

NEURAL NETWORK TRAINING
Vectors of 9 sequential samples, taken as windows from the time response

(non-averaged) of the mu band spectrum, constituted the training and testing
data for the classifier. The data set was divided into two classes, "with
movement" (WM) and "background activity" (BA), where the first corresponds
to the windows where the MRD was present.

For the single movement task, the windows for the WM class were taken
between t=6.5s and t=7.5s and, for the BA class, after t=10s. The significance
level of p>>5% was used as criterion to select the windows for the BA class.  It
was calculated using variance analysis (ANOVA) using the interval t=10s to
t=20s as reference. A 1:3 ratio of windows (WM:BA) was used for the training /
test set in all trials of a session for this task.

For the multiple movements task, the WM class windows were taken from
the time response after t=11s, using the significance criteria of p≤5%. The
windows for the BA class were taken in the interval t=2s to t=10s using p>>5%.
In both cases, the reference was the interval with background activity, i.e.,
between t=2s and t=10s. For this task, a 1:1 ratio was used for the training / test
set, in all trials.

After the training / test set be defined, the next step was the selection of the
neural classifier. The main requirement for the classifier was to have a simple
topology, capable of a fast training and adaptation. This characteristic is
fundamental for a future real-time implementation. Recent literature has shown



that the Kohonen LVQ (type 2) architecture (KOHONEN, 1997) is suited for
this purpose (FLOTZINGER et al., 1994; PFURTSCHELLER et al., 1996;
FORD, 1996), and is shown in Fig. 2.

The LVQ classifier is based on clustering with supervised learning and uses
vector quantization in order to approximate the optimal decision boundaries of a
Bayesian classifier (FORD, 1996). The structure of the classifier is constituted
by two layers. The first one is denominated competitive layer. In this layer, the
Euclidean metric (DIST module in the figure) determines the distance between
the input pattern x and the s=(n1+n2) reference vectors (Ri). The reference
vectors, defined by the neural network training, are composed by n1 subclasses
representing the WM class and n2 subclasses for the BA class. A "winner takes it
all" algorithm activates ("1") a single neuron among the n1 neurons of the WM
class or among the n2 neurons of the BA class. All other neurons are not
activated ("0"). The only activated neuron corresponds to the reference vector
closest to the input pattern. The second layer is linear and associates a weight
"1" to each subclass of the corresponding class. Therefore, applying an input
pattern x to the classifier, only one class (either WM or BA) will be activated.

Figure 2 –Structure of the LVQ neural network

Neural networks were trained by session (or group of sessions, in the case
of a given volunteer has taken part in more than one session of the same task),
by task and by volunteer.

The criterion for evaluating the performance of the neural networks was
defined as the number of correct classifications. That is, the number of true
positive (presence of MRD; WM class) and true negative (presence of
background activity; BA class) classifications relative to the misclassified cases.
Common measures of performance for classifiers are: sensitivity and specificity,
as defined in Eq. (1) and (2):
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Sensitivity and specificity identify, respectively, the proportion of cases of
classes WM and BA that are correctly classified. These two measures were
calculated for both the training and the testing sets. Using these measures, a
performance index (de) of the i-th training epoch of a neural network was
calculated using Eq. (3). This index is normalized in the range [0..1], where 0 is
defined as the worst performance (0% of correct classifications) and 1 the best
(100%).

( ) ( ) ( )iesiseide ⋅= (3)

RESULTS
The training of a LVQ neural network requires two parameters be set: the

learning rate α  and the number of training epochs. According to the literature,
the optimal number of epochs for training a LVQ neural network ranges
between 50 and 200 times the number of subclasses considered. In this work, the
best performance was found using 250 times. The learning rate was empirically
set to 0.01, based on previous experiments.

The initial reference set was defined as the cluster centers determined by the
fuzzy c-means algorithm. All the 36 possible combinations using 1 to 6
reference vectors for both classes (WM and BA) were tried in order to find the
best combination. For all volunteers each training was repeated three times. The
best results for all volunteers are shown in table 1.

Table 1 – Training results of the LVQs networks
Volunte

er #
Movement Subclasses Performance

[%]
Volunte

er #
Movement Subclasses Performance

[%]

BA WM BA CM

1 Single 6 5 64,0 6 Single 4 3 62,1
1 Repetition 3 4 78,1 6 Repetition 4 3 59,1
2 Single 3 1 88,2 7 Single 1 3 55,9
2 Repetition 4 1 72,2 7 Repetition 2 1 70,8
3 Single 4 2 65,6 8 Repetition 2 4 60,1
3 Repetition 1 1 71,7 9 Repetition 3 2 53,8
4 Single 2 2 63,2 13 Single 5 3 73,8
5 Single 2 5 57,6 13 Repetition 5 5 60,6
5 Repetition 5 5 62,1

Signals of some volunteers were not used in the experiment. This happened
when visual inspection of the data followed by a variance analysis did not show
the presence of a pattern. In such cases these signals were discarded. Data
shown in table 1 is summarized in table 2, showing the average performance.

Table 2 – Comparative average performance
Performance [%] Subclass BA Subclass WMMovement

Avg. Max. Min. Avg. Max. Min. Avg. Max. Min.
Single 66,3(*) 88,2 55,9 3,4 6 1 3 5 1

Repetition 65,4(*) 78,1 53,8 3,2 5 1 2,9 5 1
(*) – significance (p) 84%



DISCUSSION AND CONCLUSIONS
The Kohonen LVQ neural network was well suited for identifying the two

classes of EEG signals, suggesting a good robustness, considering the low signal
to noise ratio typical of the EEG and the biological variability. The training
phase was relatively fast in comparison with other methods. This is a crucial
feature for classifiers that has to be adapted in real-time, what is the case of
some applications of Brain-Computer Interfaces (BCI).

. The neural network trained for both tasks achieved about the same average
performance (around 65%). This means that the construction of a command set
associated to the detection of movements (aiming a BCI) can be based in the
single movement task. For both tasks the structure of the classifier was similar,
using an average of 3 subclasses for each class (WM or BA).

The averaged time response enabled the observation of the MRD of the mu
band as expected.

Results obtained in this work encourage further development of the
methodology here reported, being important steps towards BCI technologies.
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