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ABSTRACT 

This paper presents GA-PVMINER, a parallel genetic algorithm 
that uses Parallel Virtual Machine (PVM) to discover rules in a 
database. The system uses the Michigan’s approach, where each 
individual represents a rule. A rule has the form “if condition 
then prediction”. GA-PVMINER is based on the concept 
learning framework, but it performs a generalization of the 
classification task, which can be called dependence modeling 
(sometimes also called generalized rule induction). In this task, 
different discovered rules can predict the value of different goal 
attributes in the “prediction” part of a rule, whereas in 
classification all discovered rules predict the value of the same 
goal attribute. The global population of genetic algorithm 
individuals is divided into several subpopulations, each assigned 
to a distinct processor. For each subpopulation, all the 
individuals represent rules with the same goal attribute in the 
“prediction” part of the rule. Different subpopulations evolve 
rules predicting different goal attributes. The system exploits 
both data parallelism and function parallelism. 

1. INTRODUCTION 

One of the most studied data mining tasks is classification, 
which is often cast as a concept learning task, where the goal is 
to discover IF-THEN prediction rules. 

Concept learning is the task of finding an intentional description, 
in some symbolic language, for a set of instances of the concept 
itself. Usually, propositional or first order logic is assumed as 
language and the concept description takes the form of a 
disjunction of conjunctive formulas [ 11. 

Multimodal concept learning can be a difficult task, mainly in 
the presence of noise [2], [3], [4]. For this reason, and also 
because Genetic Algorithm (GA) is an emergent tool for concept 
learning [5], [6], [7], this paper proposes a new model for a 
parallel GA-based data mining. The proposed system is based on 
the concept learning framework, but it performs a generalization 
of the classification task, which can be called dependence 
modeling (sometimes also called generalized rule induction). In 
this task, different discovered rules can predict the value of 
different goal attributes in the THEN part of a rule, whereas in 
classification all discovered rules predict the value of the same 
goal attribute. 

In general, GA-based concept learning is based on either the 
Pittsburgh or the Michigan approaches. The Pittsburgh approach 
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resembles the traditional GA where every individual in the 
population is a set of rules, representing a complete solution to 
the learning problem. Crossover and mutation are then applied in 
the usual way to create new generations of such populations. The 
Michigan approach, however, has generally used a different 
partial solution to the overall learning task. Each individual 
represents a single rule, and, in general, only through 
cooperation with the other rules in the population the overall 
problem is solved. In our system each individual represents a 
single rule. However, the evaluation of a rule (individual) is 
done independently from other rules, i.e., there is no need for 
cooperation between rules in the sense of the traditional 
Michigan approach. 

The paper is organized as follows. Section 2 describes the GA- 
PVMINER system, introducing the model and the genetic 
operators that were used. Section 3 describes the results of the 
application of GA-PVMINER to two public-domain databases. 
In section 4 results are analyzed. Finally, results are discussed 
and conclusions presented in section 5. 

2. THE GA-PVMINER ALGORITHM 

2.1 Rule Format and Chromosome Encoding 

In GA-PVMINER each individual represents a single prediction 
rule. A rule is described as: “IF C THEN P”, where C and P 
mean respectively the condition and the prediction of the rule. 

Condition is a conjunction of terms, for instance: term1 and 
term2 and . . . . It has a maximum number of terms (max_term) 
which is defined by the user. Each term is a triple <attribute, 
operator, value>. The element operator in this triple is “=‘I when 
the attribute is categorical. If the attribute is continuous, the term 
is a tuple <attribute, operator, valuefiom, value-to>, where the 
element operator is “in” and the elements valuefrom and 
value-to are values belonging to the domain of the element 
attribute. In this paper, however, we mine data sets containing 
only categorical attributes. 

Prediction is a single term that contains a goal attribute, i.e., it is 
a triple <goal-attribute, operator, value>. Goal attributes 
candidates to be selected for the prediction part of the rule are 
previously specified by the user in a meta-data file. The element 
operator is always “=“, since we assume that the goal attribute to 
be predicted is categorical. The element value in the triple is a 
value belonging to the domain of corresponding goal attribute. 
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Notice that different rules can have different goal attributes in 
their prediction parts. Therefore, as mentioned before, the data 
mining task being performed by GA-PVMINER can be seen as a 
generalization of the well-known classification task, where all 
rules have the same goal attribute in their prediction part. 

The above rule format is encoded into a chromosome in a 
relatively straightforward manner. More precisely, the 
chromosome encoding is divided into two parts. The first one is 
the C part of rule, consisting of K terms, where K is a number in 
the range [l..max_term]. The second part of the chromosome is 
the P part of the rule, consisting of a single term. We use a 
variable-length chromosome encoding, i.e., different rules 
(individuals) can have different number of attributes in their 
condition. 

2.2 Population Generation and Distribution 

The population is divided into several subpopulations, each of 
them with M individuals. For each subpopulation, all the 
individuals represent rules with the same goal attribute and the 
same goal attribute value in the P part of the rule. 

The number of subpopulations is a user-specified parameter, and 
it should be greater than or equal to the number of goal attributes 
indicated by the user. If this constraint is not respected, some 
goal attribute(s) will not occur in any discovered rule. 

For each subpopulation, the goal attribute associated with that 
subpopulation is chosen randomly by using an uniform 
probability distribution, out of the set of goal attributes indicated 
by the user. Note that two or more different subpopulations can 
be associated with the same goal attribute. However, even if this 
occurs, the two subpopulations can still evolve rules with 
different conditions. After the evolution of the GA, the best rule 
(individual) of each subpopulation is reported to the user. 

Our motivation for dividing the population into subpopulations 
is the following. First, an individual can mate only with another 
individual of the same population. This is a simple solution to 
the problem of avoiding the exchange of genetic material 
between individuals (rules) that are being evolved to predict 
different goal attributes. Second, this kind of distribution can be 
easily implemented in a parallel system, where subpopulations 
evolve in parallel. This topic is discussed in section 2.5. 

2.3 Fitness Evaluation 

The fitness function measures the goodness of a rule 
(individual). The fitness function used in this work is based on 
the J-measure, proposed by Smyth and Goodman [8], which 
measures the degree of interestingness of a rule. The higher the 
value of the J-measure for a rule, the more interesting the rule is. 
The J-measure is defined as follows (recall that a rule has the 
form “IF C THEN P’y: 

Let bJcY!z_! 
ICI 

Let a=IpI 

b 
a 

HI 
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where: ICI is the number of data instances which are covered by 
(i.e. satisfy) the C part of the rule; IPI is the number of data 
instances which are covered by the P part of the rule; IC & PI is 
the number of data instances which are covered by both the C 
part and the P part of the rule; and N is the total number of data 
instances being mined. 

Equation [l] can be conceptually divided into two parts, to 
render it somewhat more understandable. The first part, which 
we call pI, is the fraction ICI/N before the outermost brackets, 
and represents a bias favoring the generality of the rule. The 
second part, which we call pZ, is the remaining part of the 
formula. pr is derived from information theory, and is essentially 
a distance measure between our a posteriori belief about P and 
our apriori belief about P. 

We tried to use the J-measure directly as the fitness function of 
the individuals (rules). However, our early experiments showed 
two problems with this approach, which led us to make two 
modifications, as follows. 

First, we realized that the J-measure has a high value (indicating 
that the underlying rule is a high-quality one) when there is a 
large difference between our a posteriori belief about P and our 
a priori belief about P. The problem is that this difference is 
measured in a symmetric way, i.e., the J-measure will have a 
high value if either our a posteriori belief about P is much larger 
than our a priori belief about P or vice-versa. In the former case 
the rule has a high predictive accuracy. However, in the latter 
case, the rule has a low predictive accuracy. To avoid the 
discovery of this kind of rule, we have used a “one-sided” variant 
of the J-measure, defined as [9]: 

Jlmeasure =!$(b.hg(b)) PI 

Second, we noted that individuals of the first generations had a 
fitness value of zero, due to the fact that they were not covering 
any training examples. In order to solve this problem, we have 
extended the fitness function with a measure of the “correlation” 
between the attribute values in the rule antecedent and the goal 
attribute value in the rule consequent. The basic idea of this 
measure is to compute the ratio of the number of “potentially 
useful attributes” over the total number of attributes in the rule 
antecedent. A given attribute A is said to be potentially useful if 
there is at least one training example having both the A’s value 
specified in the rule antecedent and the goal attribute value 
specified in the rule consequent. 

In order to combine this extension with the equation [2] in the 
fitness function, it was necessary to normalize the above Jl- 
measure. The ratio of potentially useful attributes over the total 
number of attributes is already normalized, returning a value 
between 0 and 1. Finally, the fitness function used in our system 
is: 

fitness _ WI .(J1)+wz .(2) [31 

WI +wz 

where: JI is as defined in equation [2] (normalized to return a 
value between 0 and 1); n,,,, is the number of potentially useful 
attributes in the rule antecedent; nz is the total number of 
attributes in the rule antecedent; WI, w, are user-defined weights. 



For all experiments described in this paper, w, and w, were set to 
0.6 and 0.4 respectively. 

2.4 Genetics Operators 

2.4.1 Crossover 
@I 

The crossover operator is based on that used in GA-MINER 
[lo]. Given two parents, the algorithm first checks whether or 
not they have a common attribute occurring in their C part. 
There are two possibilities, as follows: 
(a) If the algorithm finds one or more attributes which occur in 

the C part of both parents, it randomly chooses one term out 
of all the terms which have a common attribute in both 
parents. Then it swaps the value element of the term in the 
first parent with its counterpart in the second parent. 
Example: 

parentl: (age in 21..30) and (gender = ‘male’) 
parent2: (age in lK.20) and (salary in 130.500) and 

(gender = ‘female’) 
after the crossover based on the attribute gender: 

childl: (age in 21..30) and (gender = ‘female’) 
child2: (age in lK.20) and (salary in 130.500) and 

(gender = ‘male’) 

(b) If the algorithm finds no attribute occurring in the C part of 
both parents, then it randomly chooses a term of the first 
parent and inserts it into the second parent with a 
probability equal to (man-term - K), where K is the number 
of the terms in the C part of the second parent. Therefore, 
the probability of adding one more term to the genome of 
the second parent is inversely proportional to the current 
length (number of terms) of the second parent. The 
motivation for this idea is to favor the discovery of 
somewhat shorter (hopefully, more comprehensible) rules. 
A similar computation is performed to decide whether or 
not to insert a randomly chosen term of the second parent 
into the first parent. 
Example assuming mm-term = 5: 

parentl: (age in 21..30) and (gender = ‘male’) 
parent2: (salary in 130.500) and 
(marital-status = ‘single’) 

Since there is no common attribute in both parent1 and parent2, 
suppose the term containing “gender” is chosen in the parentl. 
This term will be inserted into parent2 to produce child1 with 
probability (5 - 2)/5, i.e. 60% (3/5). Child1 would then be: 

childl: (salary in 130..500) and 
(marital-status = ‘single’) and (gender = ‘male’) 

A similar computation would be performed to decide the 
insertion a randomly chosen term of parent2 into child2. 
Finally, recall that an individual can mate only with other 
individuals of the same subpopulation, as mentioned above. 

2.4.2 Mutation 

Given an individual, the algorithm randomly chooses a term to 
undergo mutation. There are two types of mutation, namely 
attribute mutation and value mutation. The type of mutation to 
be applied is chosen at random, with a 50% probability for each 
type. These two types of mutation work as follows: 
(a) Attribute mutation: 

The algorithm replaces the current attribute in the term 
undergoing mutation with another randomly chosen valid 

attribute. An attribute is said to be valid if it does not occur 
yet in the other terms of the rule (individual). Whenever an 
attribute mutation occurs, the elements operator and value 
of the term undergoing mutation are randomly generated 
(in a manner similar to the generation of these elements in 
the initial population). 

Value mutation: 
The algorithm replaces the current value element of the 
term with another randomly generated value belonging to 
the domain of the corresponding attribute in the term. 

2.4.3 Removal 

Given an individual, the algorithm removes one of its terms in 
the C part of rule with probability proportional to the number of 
these terms. The probability of removal varies from 0, when the 
C part of the rule has only one term, to 0.9, when it already has 
max_term terms. The aim of this operation is to improve rule 
comprehensibility by shortening the C part of the rule. 

Example: 
Individual before removal: (age in 21..30) and 
(gender = ‘male’) 
Individual after removal: (gender = ‘male’) 

2.5 Exploiting Parallelism 

As mentioned above, in GA-PVMINER the global population is 
divided into several subpopulations, so that different 
subpopulations evolve rules (individuals) predicting different 
goal attributes. Each subpopulation is assigned to a distinct 
processor, so that different subpopulations evolve in parallel. In 
addition, the data being mined is also partitioned across the 
available processors. This approach has two related advantages. 
First, it allows the exploitation of data parallelism (see below). 
Second, it avoids the problem of replicating the data being mined 
across all processors, which would reduce scalability for large 
data sets. 

Each generation of the genetic algorithm consists of two phases, 
namely fitness evaluation and application of genetic operators. 
Both these phases exploit parallelism, as follows. 

The fitness evaluation phase exploits data parallelism. Fitness 
evaluation is performed by having the individuals passing 
through all the processors in a kind of round-robin scheme. To 
implement this scheme, the processors’s physical 
interconnections are mapped into a logical ring of processors. At 
first each processor computes a partial measure of fitness for its 
local individuals by accessing only its local data set. After this 
partial fitness computation, each processor transfers its local 
population of individuals (as well as the partial value of their 
fitness measure) to its “right neighbor” in the ring of processors. 
Each neighbor then computes the partial fitness measure of the 
incoming individuals on its local data set; combines this partial 
fitness measure with the previous one of the incoming 
individuals, to produce a new partial fitness measure; and 
forward the incoming individuals (with the updated partial 
fitness measure) to its right neighbor. This process is repeated 
until all individuals have passed through all the processors and 
returned to their original processors, with their final fitness value 
duly computed. This scheme is illustrated in Figure 1. Note that 
what is being passed through the processors is only individuals 
(with their partial fitness values), not the data being mined. This 
minimizes interprocessor communication overhead. 
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The phase of application of genetic operators exploits function 
parallelism. Each processor applies genetic operators to the 
individuals of its local subpopulation. This phase requires no 
interprocessor communication. 

Flow of 
individuals 
passing 
through the 

>@ ;ii”““‘;i’ ~ . Y/m 

Data set u 

Fig. 1: Model of GA-PVMINER 

3. RESULTS 

We have evaluated GA-PVMINER on two public domain data 
sets available from the UC1 repository of machine learning 
databases (http://www.ics.uci.edu/AI/M!.44achine- 
Learning.html), namely the nursery school and adult data sets. 

The nursery school data set was derived from a hierarchical 
decision model originally developed to rank applications for 
nursery schools [l 11. The final decision depended on three 
subproblems: occupation of parents and child’s nursery, family 
structure and financial standing, and social and health picture of 
the family. This data set has 12960 instances and 9 attributes, all 
of them categorical. In our experiments we have specified 3 goal 
attributes for the nursery data set, namely Recommendation, 
Social and Finance (recall that the GA can discover rules 
predicting any of the goal attributes). Notice that 
Recommendation would be the only goal attribute in a 
classification task. 

The adult data set contains 48844 data instances and 15 
attributes, categorical and continuous. We have specified two 
goal attributes for the adult data set namely “Workclass” and 
“Class”. The latter would be the only goal attribute used in a 
classification task. 

In all the experiments the genetic algorithm had 200 individuals 
in the population, and was run for 100 generations. These 
parameters values were sufficient to find some good individuals, 
but it has to be said that we have made no serious attempt to 
optimize these values. Tables 1 and 2 show the results of the 
experiments, which are discussed in the next section. 

For the experiments on the exploitation of parallelism we have 
used a parallel virtual machine (PVM)[ 121 consisting of four 
350-MHz Pentium II computers, each with 32 MB of memory 
and 6GB of disk, with operating system Linux RedHat 5.2 and 
PVM 3.3.11. The interconnection network was Ethernet with 
10Mbps. In our system one of the four processors runs the 
master program, which controls the slave programs (each 
running a subpopulation). The processor running the master 
program also runs one slave program. However, this is not a 
serious problem, since in our system the processing time taken 

by the master program is very small, in comparison with the 
processing time taken by the slave programs (which perform all 
the evolution of individuals). 

Our experiments have measured the speed of the parallel version 
of the algorithm over the sequential one. The speed up is defined 
as the ratio T, / T,,, where T, is the sequential processing time (on 
a single processor) and T,, is the parallel processing time. Tables 
3 and 4 show the speed up results. In each of these tables, the 
parallel processing time shown in the fourth column is the sum 
of the processing time itself and the initialization time (required 
to distributed the data and individuals across the processors). 

As shown in these tables, the parallel version achieved a 
reasonable speed up over the sequential version. As expected, 
the speed up was greater in the case of the adult data set. The 
reason is that this data set is larger than the nursery data set, so 
there is more opportunity for the exploration of data parallelism 
in the former. Of course, real-world databases can be much 
larger than the two public domain data sets used in our 
experiments. Therefore, we can expect that our system will 
achieve even higher speed ups in larger real-world data 
databases. This point deserves further investigation. 

Jl- 
neasu 

re 

0.0317 

0.0916 

0.0000 

0.0015 

0.0073 

0.0029 

0.0034 

0.0028 

Table 1: Results for the nurse 

Rule 

IF health = recommended 
THEN recomendation = 
priority 

IF health = priority AND 
has_nurs = very-c& THEN 
recomendation = spec_prior 

IF housing = convenient AND 
finance = inconv THEN 
recomendation = not_recom 

IF (recomendation = 
very_recom) THEN social = 
nonprob 

IF health = recommended 
AND recomendation = 
spec_prior THEN social = 
problematic 

IF (recomendation = 
very_recom) AND (health = 
recommended) THEN social = 
slightly_prob 
IF recomendation = 
very_recom AND housing = 
convenient THEN finance = 
convenient 
IF housing = convenient AND 
recomendation = spec_prior 
THEN finance = inconv 

1 average 

data set. 
Ihining 

Data 
lC&Pl/ 
ICI 

0.6184 

0.9922 

0.3447 

0.4660 

0.5307 

0.5339 

0.7681 

0.6446 

0.6124 

Test 
Data 
C&PI/ 
ICI 

0.6229 

0.9790 

0.3067 

0.5700 

0.5260 

0.4299 

0.7428 

0.6993 

0.6096 
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Table 2: Results for the adult data set. 

9 

0.0152 States AND ocuppation = 0.4755 0.5000 
Farming-fishing THEN 
workclass = Self-emp-not-inc 
IF marital-status = Never- 

0.0042 married AND class = <=50K 0.7709 0.7505 
THEN workclass = Private 

IF class = >50K AND sex = 
0.0061 Male THEN workclass = Self- 0.0872 0.0899 

emp-inc 
I 

0.0465 
IF marital-status = Never- 
married THEN class = <=50K 0.9540 0.9554 

IF sex = Male AND Hence, it does not make much sense to evaluate the performance 

0.0416 relationship = Husband THEN 0.4486 0.4488 of the discovered rule set as a whole in test set, and the 

class = >50K discovered rules are better evaluated on a rule-by-rule basis. 

average 1 0,5472 1 0,5489 

Table 3: Speed up results for the nursery data set 
(12906 data instances) 

Number of Number of Sequential Parallel Speed 
Processors sub processing processing up 

1 
3 
4 

populations time time 
1 134 sec. - 
3 402 sec. 252 sec. 1.595 
4 536 sec. 320 sec. 1.675 

Table 4: Speed up results for the adult data set 
(48,844 data instances) 

4. DISCUSSION AND CONCLUSIONS 

In a classification task, there are some well-defined measures of 
predictive accuracy. For instance, a commonly used measure is 
the accuracy rate, i.e., the ratio of the number of correctly 
classified test instances over the total number of test instances. 
Despite its popularity this measure has several defects, and other 
measures can (and probably should) be used [13]. 

The target of this work is the dependence modeling task which, 
as mentioned before, is a generalization of the classification task, 
where different rules can predict different attributes. 

In both tasks the evaluation of the discovered rules must take 
into account their predictive accuracy on a separate test set. The 
difference is as follows. In classification we usually aim at 
discovering a rule set that can classify any test instance that 
appears in the future. Therefore it makes sense to compute an 
accuracy rate or related measure over all instances in the test set. 

In dependence modeling, in the sense addressed in this paper, we 
do not aim to classify the whole test set. Rather, the goal is to 
discover a few interesting rules to be shown to the user. We can 
think of the discovered rules as the most valuable “knowledge 
nuggets” extracted from the data. These knowledge nuggets are 
valuable even if they do not cover the whole test set. In other 
words, the value of the discovered rules depends on their 
predictive accuracy on the part of the test set covered by those 
rules, but not on the test set as a whole. After all, there are 
several goal attributes, and it is not realistic to expect that the 
discovered rules can predict the value of all goal attributes for all 
instances in the test set. In fact, we could mine such a large rule 
set by running one classification algorithm for each goal 
attribute, but we would get too many rules, and the task being 
solved would be simply “multiple classification”. In contrast, in 
the dependence modeling task addressed in this paper we aim at 
discovering a much smaller set of interesting rules. 

The value of the JI-measure for a rule is computed by equation 
[2]. For each discovered rule, the tables also show, in the last 
two columns, the “confidence factor” (CF) of the rule - i.e., 
ICdPl / ICI - in the training set and in the test set. 

Comparing the two CFs for each rule we can evaluate the 
generalization performance of the discovered rules. In general, 
the CF in the test set is not significantly lower than the CF in the 
training set, as can be seen in the last row (with the average 
results) of the table. In particular, for the nursery data set (Table 
l), out of the 8 discovered rules, 3 have a CF in the test set even 
higher than its CF in the training set. 

Overall, the results show that the discovered rules do have a 
good generalization performance on the unseen test set. Recall 
that the CF of rule in the training set usually is an optimistic 
estimate of its CF in the test set. Hence, the Jl-measure seems to 
be doing a good job of selecting rules with high predictive 
accuracy on the test set. 

However, future work should include a more extensive set of 
experiments mining other data sets, to further validate the 
empirical results reported in this paper. In particular, 
experiments mining very large databases are necessary for better 
validating the parallelization strategy proposed in this paper. 

In any case, note that our system offers not only an opportunity 
for the exploitation of data parallelism in very large databases 
but also an opportunity to perform a parallel search in the 
dependence modeling task, which has a very large search space 
(since we search for rules predicting different goal attributes). 
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