
A Parallel Genetic Algorithm for Rule Discovery in Large Databases

Dieferson Luis Alves de Araujo’ , Heitor S. Lopes’, Alex A. Freitas2

1 CEFET-PR - Centro Federal de Educa@o Tecnoldgica do Parana
CPGEI - Curso de P6s-Gradua@o em Engenharia ElCtrica e Informatica Industrial

Av. 7 de setembro, 3165 - 80230-901 Curitiba (PR) - BRAZIL
dief@cpgei.cefetpr.br, hslopes@cpgei.cefetpr.br

2 PUC-PR - Pontificia Universidade Catolica do Parana
PPGIA - Programa de Pas-Gradua@o em Informatica Aplicada

Rua Imaculada Concei@o, 115.5 - 80215901 Curitiba (PR) - BRAZIL
alex@ppgia.pucpr.br

ABSTRACT

This paper presents GA-PVMINER, a parallel genetic algorithm
that uses Parallel Virtual Machine (PVM) to discover rules in a
database. The system uses the Michigan’s approach, where each
individual represents a rule. A rule has the form “if condition
then prediction”. GA-PVMINER is based on the concept
learning framework, but it performs a generalization of the
classification task, which can be called dependence modeling
(sometimes also called generalized rule induction). In this task,
different discovered rules can predict the value of different goal
attributes in the “prediction” part of a rule, whereas in
classification all discovered rules predict the value of the same
goal attribute. The global population of genetic algorithm
individuals is divided into several subpopulations, each assigned
to a distinct processor. For each subpopulation, all the
individuals represent rules with the same goal attribute in the
“prediction” part of the rule. Different subpopulations evolve
rules predicting different goal attributes. The system exploits
both data parallelism and function parallelism.

1. INTRODUCTION

One of the most studied data mining tasks is classification,
which is often cast as a concept learning task, where the goal is
to discover IF-THEN prediction rules.

Concept learning is the task of finding an intentional description,
in some symbolic language, for a set of instances of the concept
itself. Usually, propositional or first order logic is assumed as
language and the concept description takes the form of a
disjunction of conjunctive formulas [11.

Multimodal concept learning can be a difficult task, mainly in
the presence of noise [2], [3], [4]. For this reason, and also
because Genetic Algorithm (GA) is an emergent tool for concept
learning [5], [6], [7], this paper proposes a new model for a
parallel GA-based data mining. The proposed system is based on
the concept learning framework, but it performs a generalization
of the classification task, which can be called dependence
modeling (sometimes also called generalized rule induction). In
this task, different discovered rules can predict the value of
different goal attributes in the THEN part of a rule, whereas in
classification all discovered rules predict the value of the same
goal attribute.

In general, GA-based concept learning is based on either the
Pittsburgh or the Michigan approaches. The Pittsburgh approach

Research supported by a CAPES grant to D.L.A. Araujo.

resembles the traditional GA where every individual in the
population is a set of rules, representing a complete solution to
the learning problem. Crossover and mutation are then applied in
the usual way to create new generations of such populations. The
Michigan approach, however, has generally used a different
partial solution to the overall learning task. Each individual
represents a single rule, and, in general, only through
cooperation with the other rules in the population the overall
problem is solved. In our system each individual represents a
single rule. However, the evaluation of a rule (individual) is
done independently from other rules, i.e., there is no need for
cooperation between rules in the sense of the traditional
Michigan approach.

The paper is organized as follows. Section 2 describes the GA-
PVMINER system, introducing the model and the genetic
operators that were used. Section 3 describes the results of the
application of GA-PVMINER to two public-domain databases.
In section 4 results are analyzed. Finally, results are discussed
and conclusions presented in section 5.

2. THE GA-PVMINER ALGORITHM

2.1 Rule Format and Chromosome Encoding

In GA-PVMINER each individual represents a single prediction
rule. A rule is described as: “IF C THEN P”, where C and P
mean respectively the condition and the prediction of the rule.

Condition is a conjunction of terms, for instance: term1 and
term2 and It has a maximum number of terms (max_term)
which is defined by the user. Each term is a triple <attribute,
operator, value>. The element operator in this triple is “=‘I when
the attribute is categorical. If the attribute is continuous, the term
is a tuple <attribute, operator, valuefiom, value-to>, where the
element operator is “in” and the elements valuefrom and
value-to are values belonging to the domain of the element
attribute. In this paper, however, we mine data sets containing
only categorical attributes.

Prediction is a single term that contains a goal attribute, i.e., it is
a triple <goal-attribute, operator, value>. Goal attributes
candidates to be selected for the prediction part of the rule are
previously specified by the user in a meta-data file. The element
operator is always “=“, since we assume that the goal attribute to
be predicted is categorical. The element value in the triple is a
value belonging to the domain of corresponding goal attribute.

0-7803~5731-O/99/$10.00 01999 IEEE III-940

Notice that different rules can have different goal attributes in
their prediction parts. Therefore, as mentioned before, the data
mining task being performed by GA-PVMINER can be seen as a
generalization of the well-known classification task, where all
rules have the same goal attribute in their prediction part.

The above rule format is encoded into a chromosome in a
relatively straightforward manner. More precisely, the
chromosome encoding is divided into two parts. The first one is
the C part of rule, consisting of K terms, where K is a number in
the range [l..max_term]. The second part of the chromosome is
the P part of the rule, consisting of a single term. We use a
variable-length chromosome encoding, i.e., different rules
(individuals) can have different number of attributes in their
condition.

2.2 Population Generation and Distribution

The population is divided into several subpopulations, each of
them with M individuals. For each subpopulation, all the
individuals represent rules with the same goal attribute and the
same goal attribute value in the P part of the rule.

The number of subpopulations is a user-specified parameter, and
it should be greater than or equal to the number of goal attributes
indicated by the user. If this constraint is not respected, some
goal attribute(s) will not occur in any discovered rule.

For each subpopulation, the goal attribute associated with that
subpopulation is chosen randomly by using an uniform
probability distribution, out of the set of goal attributes indicated
by the user. Note that two or more different subpopulations can
be associated with the same goal attribute. However, even if this
occurs, the two subpopulations can still evolve rules with
different conditions. After the evolution of the GA, the best rule
(individual) of each subpopulation is reported to the user.

Our motivation for dividing the population into subpopulations
is the following. First, an individual can mate only with another
individual of the same population. This is a simple solution to
the problem of avoiding the exchange of genetic material
between individuals (rules) that are being evolved to predict
different goal attributes. Second, this kind of distribution can be
easily implemented in a parallel system, where subpopulations
evolve in parallel. This topic is discussed in section 2.5.

2.3 Fitness Evaluation

The fitness function measures the goodness of a rule
(individual). The fitness function used in this work is based on
the J-measure, proposed by Smyth and Goodman [8], which
measures the degree of interestingness of a rule. The higher the
value of the J-measure for a rule, the more interesting the rule is.
The J-measure is defined as follows (recall that a rule has the
form “IF C THEN P’y:

Let bJcY!z_!
ICI

Let a=IpI

b
a

HI

II-94

where: ICI is the number of data instances which are covered by
(i.e. satisfy) the C part of the rule; IPI is the number of data
instances which are covered by the P part of the rule; IC & PI is
the number of data instances which are covered by both the C
part and the P part of the rule; and N is the total number of data
instances being mined.

Equation [l] can be conceptually divided into two parts, to
render it somewhat more understandable. The first part, which
we call pI, is the fraction ICI/N before the outermost brackets,
and represents a bias favoring the generality of the rule. The
second part, which we call pZ, is the remaining part of the
formula. pr is derived from information theory, and is essentially
a distance measure between our a posteriori belief about P and
our apriori belief about P.

We tried to use the J-measure directly as the fitness function of
the individuals (rules). However, our early experiments showed
two problems with this approach, which led us to make two
modifications, as follows.

First, we realized that the J-measure has a high value (indicating
that the underlying rule is a high-quality one) when there is a
large difference between our a posteriori belief about P and our
a priori belief about P. The problem is that this difference is
measured in a symmetric way, i.e., the J-measure will have a
high value if either our a posteriori belief about P is much larger
than our a priori belief about P or vice-versa. In the former case
the rule has a high predictive accuracy. However, in the latter
case, the rule has a low predictive accuracy. To avoid the
discovery of this kind of rule, we have used a “one-sided” variant
of the J-measure, defined as [9]:

Jlmeasure =!$(b.hg(b)) PI

Second, we noted that individuals of the first generations had a
fitness value of zero, due to the fact that they were not covering
any training examples. In order to solve this problem, we have
extended the fitness function with a measure of the “correlation”
between the attribute values in the rule antecedent and the goal
attribute value in the rule consequent. The basic idea of this
measure is to compute the ratio of the number of “potentially
useful attributes” over the total number of attributes in the rule
antecedent. A given attribute A is said to be potentially useful if
there is at least one training example having both the A’s value
specified in the rule antecedent and the goal attribute value
specified in the rule consequent.

In order to combine this extension with the equation [2] in the
fitness function, it was necessary to normalize the above Jl-
measure. The ratio of potentially useful attributes over the total
number of attributes is already normalized, returning a value
between 0 and 1. Finally, the fitness function used in our system
is:

fitness _ WI .(J1)+wz .(2) [31

WI +wz

where: JI is as defined in equation [2] (normalized to return a
value between 0 and 1); n,,,, is the number of potentially useful
attributes in the rule antecedent; nz is the total number of
attributes in the rule antecedent; WI, w, are user-defined weights.

For all experiments described in this paper, w, and w, were set to
0.6 and 0.4 respectively.

2.4 Genetics Operators

2.4.1 Crossover
@I

The crossover operator is based on that used in GA-MINER
[lo]. Given two parents, the algorithm first checks whether or
not they have a common attribute occurring in their C part.
There are two possibilities, as follows:
(a) If the algorithm finds one or more attributes which occur in

the C part of both parents, it randomly chooses one term out
of all the terms which have a common attribute in both
parents. Then it swaps the value element of the term in the
first parent with its counterpart in the second parent.
Example:

parentl: (age in 21..30) and (gender = ‘male’)
parent2: (age in lK.20) and (salary in 130.500) and

(gender = ‘female’)
after the crossover based on the attribute gender:

childl: (age in 21..30) and (gender = ‘female’)
child2: (age in lK.20) and (salary in 130.500) and

(gender = ‘male’)

(b) If the algorithm finds no attribute occurring in the C part of
both parents, then it randomly chooses a term of the first
parent and inserts it into the second parent with a
probability equal to (man-term - K), where K is the number
of the terms in the C part of the second parent. Therefore,
the probability of adding one more term to the genome of
the second parent is inversely proportional to the current
length (number of terms) of the second parent. The
motivation for this idea is to favor the discovery of
somewhat shorter (hopefully, more comprehensible) rules.
A similar computation is performed to decide whether or
not to insert a randomly chosen term of the second parent
into the first parent.
Example assuming mm-term = 5:

parentl: (age in 21..30) and (gender = ‘male’)
parent2: (salary in 130.500) and
(marital-status = ‘single’)

Since there is no common attribute in both parent1 and parent2,
suppose the term containing “gender” is chosen in the parentl.
This term will be inserted into parent2 to produce child1 with
probability (5 - 2)/5, i.e. 60% (3/5). Child1 would then be:

childl: (salary in 130..500) and
(marital-status = ‘single’) and (gender = ‘male’)

A similar computation would be performed to decide the
insertion a randomly chosen term of parent2 into child2.
Finally, recall that an individual can mate only with other
individuals of the same subpopulation, as mentioned above.

2.4.2 Mutation

Given an individual, the algorithm randomly chooses a term to
undergo mutation. There are two types of mutation, namely
attribute mutation and value mutation. The type of mutation to
be applied is chosen at random, with a 50% probability for each
type. These two types of mutation work as follows:
(a) Attribute mutation:

The algorithm replaces the current attribute in the term
undergoing mutation with another randomly chosen valid

attribute. An attribute is said to be valid if it does not occur
yet in the other terms of the rule (individual). Whenever an
attribute mutation occurs, the elements operator and value
of the term undergoing mutation are randomly generated
(in a manner similar to the generation of these elements in
the initial population).

Value mutation:
The algorithm replaces the current value element of the
term with another randomly generated value belonging to
the domain of the corresponding attribute in the term.

2.4.3 Removal

Given an individual, the algorithm removes one of its terms in
the C part of rule with probability proportional to the number of
these terms. The probability of removal varies from 0, when the
C part of the rule has only one term, to 0.9, when it already has
max_term terms. The aim of this operation is to improve rule
comprehensibility by shortening the C part of the rule.

Example:
Individual before removal: (age in 21..30) and
(gender = ‘male’)
Individual after removal: (gender = ‘male’)

2.5 Exploiting Parallelism

As mentioned above, in GA-PVMINER the global population is
divided into several subpopulations, so that different
subpopulations evolve rules (individuals) predicting different
goal attributes. Each subpopulation is assigned to a distinct
processor, so that different subpopulations evolve in parallel. In
addition, the data being mined is also partitioned across the
available processors. This approach has two related advantages.
First, it allows the exploitation of data parallelism (see below).
Second, it avoids the problem of replicating the data being mined
across all processors, which would reduce scalability for large
data sets.

Each generation of the genetic algorithm consists of two phases,
namely fitness evaluation and application of genetic operators.
Both these phases exploit parallelism, as follows.

The fitness evaluation phase exploits data parallelism. Fitness
evaluation is performed by having the individuals passing
through all the processors in a kind of round-robin scheme. To
implement this scheme, the processors’s physical
interconnections are mapped into a logical ring of processors. At
first each processor computes a partial measure of fitness for its
local individuals by accessing only its local data set. After this
partial fitness computation, each processor transfers its local
population of individuals (as well as the partial value of their
fitness measure) to its “right neighbor” in the ring of processors.
Each neighbor then computes the partial fitness measure of the
incoming individuals on its local data set; combines this partial
fitness measure with the previous one of the incoming
individuals, to produce a new partial fitness measure; and
forward the incoming individuals (with the updated partial
fitness measure) to its right neighbor. This process is repeated
until all individuals have passed through all the processors and
returned to their original processors, with their final fitness value
duly computed. This scheme is illustrated in Figure 1. Note that
what is being passed through the processors is only individuals
(with their partial fitness values), not the data being mined. This
minimizes interprocessor communication overhead.

III-942

The phase of application of genetic operators exploits function
parallelism. Each processor applies genetic operators to the
individuals of its local subpopulation. This phase requires no
interprocessor communication.

Flow of
individuals
passing
through the

>@ ;ii”““‘;i’ ~ . Y/m

Data set u

Fig. 1: Model of GA-PVMINER

3. RESULTS

We have evaluated GA-PVMINER on two public domain data
sets available from the UC1 repository of machine learning
databases (http://www.ics.uci.edu/AI/M!.44achine-
Learning.html), namely the nursery school and adult data sets.

The nursery school data set was derived from a hierarchical
decision model originally developed to rank applications for
nursery schools [l 11. The final decision depended on three
subproblems: occupation of parents and child’s nursery, family
structure and financial standing, and social and health picture of
the family. This data set has 12960 instances and 9 attributes, all
of them categorical. In our experiments we have specified 3 goal
attributes for the nursery data set, namely Recommendation,
Social and Finance (recall that the GA can discover rules
predicting any of the goal attributes). Notice that
Recommendation would be the only goal attribute in a
classification task.

The adult data set contains 48844 data instances and 15
attributes, categorical and continuous. We have specified two
goal attributes for the adult data set namely “Workclass” and
“Class”. The latter would be the only goal attribute used in a
classification task.

In all the experiments the genetic algorithm had 200 individuals
in the population, and was run for 100 generations. These
parameters values were sufficient to find some good individuals,
but it has to be said that we have made no serious attempt to
optimize these values. Tables 1 and 2 show the results of the
experiments, which are discussed in the next section.

For the experiments on the exploitation of parallelism we have
used a parallel virtual machine (PVM)[121 consisting of four
350-MHz Pentium II computers, each with 32 MB of memory
and 6GB of disk, with operating system Linux RedHat 5.2 and
PVM 3.3.11. The interconnection network was Ethernet with
10Mbps. In our system one of the four processors runs the
master program, which controls the slave programs (each
running a subpopulation). The processor running the master
program also runs one slave program. However, this is not a
serious problem, since in our system the processing time taken

by the master program is very small, in comparison with the
processing time taken by the slave programs (which perform all
the evolution of individuals).

Our experiments have measured the speed of the parallel version
of the algorithm over the sequential one. The speed up is defined
as the ratio T, / T,,, where T, is the sequential processing time (on
a single processor) and T,, is the parallel processing time. Tables
3 and 4 show the speed up results. In each of these tables, the
parallel processing time shown in the fourth column is the sum
of the processing time itself and the initialization time (required
to distributed the data and individuals across the processors).

As shown in these tables, the parallel version achieved a
reasonable speed up over the sequential version. As expected,
the speed up was greater in the case of the adult data set. The
reason is that this data set is larger than the nursery data set, so
there is more opportunity for the exploration of data parallelism
in the former. Of course, real-world databases can be much
larger than the two public domain data sets used in our
experiments. Therefore, we can expect that our system will
achieve even higher speed ups in larger real-world data
databases. This point deserves further investigation.

Jl-
neasu

re

0.0317

0.0916

0.0000

0.0015

0.0073

0.0029

0.0034

0.0028

Table 1: Results for the nurse

Rule

IF health = recommended
THEN recomendation =
priority

IF health = priority AND
has_nurs = very-c& THEN
recomendation = spec_prior

IF housing = convenient AND
finance = inconv THEN
recomendation = not_recom

IF (recomendation =
very_recom) THEN social =
nonprob

IF health = recommended
AND recomendation =
spec_prior THEN social =
problematic

IF (recomendation =
very_recom) AND (health =
recommended) THEN social =
slightly_prob
IF recomendation =
very_recom AND housing =
convenient THEN finance =
convenient
IF housing = convenient AND
recomendation = spec_prior
THEN finance = inconv

1 average

data set.
Ihining

Data
lC&Pl/
ICI

0.6184

0.9922

0.3447

0.4660

0.5307

0.5339

0.7681

0.6446

0.6124

Test
Data
C&PI/
ICI

0.6229

0.9790

0.3067

0.5700

0.5260

0.4299

0.7428

0.6993

0.6096

m-943

Table 2: Results for the adult data set.

9

0.0152 States AND ocuppation = 0.4755 0.5000
Farming-fishing THEN
workclass = Self-emp-not-inc
IF marital-status = Never-

0.0042 married AND class = <=50K 0.7709 0.7505
THEN workclass = Private

IF class = >50K AND sex =
0.0061 Male THEN workclass = Self- 0.0872 0.0899

emp-inc
I

0.0465
IF marital-status = Never-
married THEN class = <=50K 0.9540 0.9554

IF sex = Male AND Hence, it does not make much sense to evaluate the performance

0.0416 relationship = Husband THEN 0.4486 0.4488 of the discovered rule set as a whole in test set, and the

class = >50K discovered rules are better evaluated on a rule-by-rule basis.

average 1 0,5472 1 0,5489

Table 3: Speed up results for the nursery data set
(12906 data instances)

Number of Number of Sequential Parallel Speed
Processors sub processing processing up

1
3
4

populations time time
1 134 sec. -
3 402 sec. 252 sec. 1.595
4 536 sec. 320 sec. 1.675

Table 4: Speed up results for the adult data set
(48,844 data instances)

4. DISCUSSION AND CONCLUSIONS

In a classification task, there are some well-defined measures of
predictive accuracy. For instance, a commonly used measure is
the accuracy rate, i.e., the ratio of the number of correctly
classified test instances over the total number of test instances.
Despite its popularity this measure has several defects, and other
measures can (and probably should) be used [13].

The target of this work is the dependence modeling task which,
as mentioned before, is a generalization of the classification task,
where different rules can predict different attributes.

In both tasks the evaluation of the discovered rules must take
into account their predictive accuracy on a separate test set. The
difference is as follows. In classification we usually aim at
discovering a rule set that can classify any test instance that
appears in the future. Therefore it makes sense to compute an
accuracy rate or related measure over all instances in the test set.

In dependence modeling, in the sense addressed in this paper, we
do not aim to classify the whole test set. Rather, the goal is to
discover a few interesting rules to be shown to the user. We can
think of the discovered rules as the most valuable “knowledge
nuggets” extracted from the data. These knowledge nuggets are
valuable even if they do not cover the whole test set. In other
words, the value of the discovered rules depends on their
predictive accuracy on the part of the test set covered by those
rules, but not on the test set as a whole. After all, there are
several goal attributes, and it is not realistic to expect that the
discovered rules can predict the value of all goal attributes for all
instances in the test set. In fact, we could mine such a large rule
set by running one classification algorithm for each goal
attribute, but we would get too many rules, and the task being
solved would be simply “multiple classification”. In contrast, in
the dependence modeling task addressed in this paper we aim at
discovering a much smaller set of interesting rules.

The value of the JI-measure for a rule is computed by equation
[2]. For each discovered rule, the tables also show, in the last
two columns, the “confidence factor” (CF) of the rule - i.e.,
ICdPl / ICI - in the training set and in the test set.

Comparing the two CFs for each rule we can evaluate the
generalization performance of the discovered rules. In general,
the CF in the test set is not significantly lower than the CF in the
training set, as can be seen in the last row (with the average
results) of the table. In particular, for the nursery data set (Table
l), out of the 8 discovered rules, 3 have a CF in the test set even
higher than its CF in the training set.

Overall, the results show that the discovered rules do have a
good generalization performance on the unseen test set. Recall
that the CF of rule in the training set usually is an optimistic
estimate of its CF in the test set. Hence, the Jl-measure seems to
be doing a good job of selecting rules with high predictive
accuracy on the test set.

However, future work should include a more extensive set of
experiments mining other data sets, to further validate the
empirical results reported in this paper. In particular,
experiments mining very large databases are necessary for better
validating the parallelization strategy proposed in this paper.

In any case, note that our system offers not only an opportunity
for the exploitation of data parallelism in very large databases
but also an opportunity to perform a parallel search in the
dependence modeling task, which has a very large search space
(since we search for rules predicting different goal attributes).

5. REFERENCES

[l] Neri F. and Giordana A. - “A parallel genetic algorithm for
concept learning”. In Eshelman L. J. (editor), Proceedings
of the 61h International Conference on Genetic Algorithms,
pp. 436-443, Morgan Kaufmann,1995.

[2] Danyluk A. P. and Provost F.J. - “Small disjuncts in
action: learning to diagnose errors in the local loop of
telephone network”. Proceedings of the IOlh International
Conference on Machine-Learning, pp. 81-88, 1993.

II-944

[3] Holte R., Acker L. and Porter B. - “Concept learning and
the problem of small disjuncts”. Proceedings of the Il’h
International Joint Conference on Artificial Intelligence,
pp. 813-818, Detroit, MI, 1989.

[4] Quinlan J. R. - “Improved estimates for the accuracy of
small disjuncts”. Machine Learning, vol. 6, pp. 93-98,
1991.

[5] DeJong K. A., Spears W. M. and Gordon F. D. - “Using
genetic algorithms for concept learning”. Machine
Learning, vol. 13, pp. 161-188, 1993.

[6] Giordana A. and Saitta L. - “Learning disjunctive concepts
by means of genetic algorithms”. Proceedings of the Ilfh
International Conference on Machine Learning, pp. 96-
104,1994.

[7] Greene D. P. and Smith S. F. - “Competition-based
induction of decision models from examples”. Machine
Learning, vol. 13, pp. 229-258, 1993.

[8] Smyth P. and Goodman R. M. - “Rule induction using
information theory”. In Piatetsky-Shapiro G. and Frawley
J. (editors), Knowledge Discovery in Databases, pp. 159-
176, Cambridge: MIT press, 199 1.

[9] Wang K., Tay S. H.W. and Liu B. - “Interestingness-based
interval merger for numeric association rules”. Proceedings
of the 41h International Conference on Knowledge
Discovery and Data Mining, pp. 121-127, AAAI Press,
1998.

[lo] Flockhart I. W. - GA-MINER: Parallel Data Mining with
Hierarchical Genetic Algorithms - final report. EPCC-
AIKMS-GA-MINER-Report 1.0, The University of
Edinburgh, 1995.

[ll] Bohanec M., Rajkovic V. - “Expert system for decision
making”. Sistemica, vol. 1, pp. 145-157, 1990.

[12] Geist A., Benguelin A., Dongarra J., Jiang W., Manchek R.
and Sunderam V. - PVM - Parallel Virtual Machine - A
Users Guide and Tutorial for Networked Parallel
Computing., Cambridge: MIT Press, 1994.

[13] Hand D. - Construction and Assessment of Classification
Rules. Chichester: John Wiley & Sons, 1997.

m-945

	MAIN MENU
	Sessions
	Authors

	Search
	Print

