
Inverse Kinematics of Redundant Robotic Manipulators Trajectories Using
Genetic Algorithms

Munif Gebara Junior, Alfranci Freitas dos Santos, Heitor Silvério Lopes

Centro Federal de Educação Tecnológica do Paraná / CPGEI
Av. 7 de setembro, 3165

80230-901 Curitiba (PR) – Brazil
jackal@bsi.com.br, {freitas,hslopes}@cpgei.cefetpr.br

Abstract: The problem of inverse kinematics of manipulators is always present in robotics. The solution of this
problem, particularly for redundant manipulators, is difficult because it includes nonlinear equations and an
extremely large number of feasible solutions for most end-effector positions. This paper presents a Genetic
Algorithm (GA) to solve this problem for trajectories. The results show that GA can be useful for real-world
applications.

Keywords: genetic algorithms, robotic manipulator, inverse kinematics, PUMA

1. INTRODUCTION

The inverse kinematics is a difficult problem: given
the desired position and orientation of the end-
effector, compute the set of joint angles that will
achieve this position and orientation. The solution of
this problem is difficult because it includes nonlinear
equations and transcedental functions. In some cases
this problem has only iterative solutions. For inverse
kinematics of trajectories, this problem becomes even
more difficult because the inverse kinematics have to
be repeated for every point of a trajectory. Hence,
the use of alternative methods, like GA, for the
resolution of this problem is justified [2] [4].

This work presents the solution of the inverse
kinematics of trajectories using GA for two cases: a
non-redundant and a redundant manipulator.

2. BACKGROUND

2.1 Genetic Algorithms

Genetic Algorithms - GAs are a search method that
has been widely used in applications where the size
of the search space is very large. In essence, GAs are
“search algorithms based on the mechanics of natural
selection and natural genetics” [3]. GAs are inspired
on the principle of survival of the fittest, where the
fittest individuals are selected to produce offspring
for the next generation. In the context of search,
individuals are candidate solutions to a given search
problem. Hence, reproduction of the fittest
individuals means reproduction of the best current
candidate solutions. Genetic operators such as
selection, crossover and mutation are applied to the
fittest individuals to generate. One of the advantages
of GAs over “traditional” search methods is that the
former performs a kind of global search using a

population of individuals, rather than performing a
local, hill-climbing search. Global search methods
are less likely to get trapped into local maxima, when
compared to local search methods.

2.2 Forward kinematics, inverse kinematics and
manipulator workspace

A robotic manipulator may be thought of a set of
bodies chained by joints. Those bodies are called
links. Each joint form a connection between a
neighboring pair of links. The manipulator extremity
is called end-effector.

A configuration of the manipulator is a set of values
that represent the angles between pairs of consecutive
links. The forward kinematics maps the joint angles
of the manipulator into the Cartesian coordinates of
position and orientation of the end-effector.
Similarly, the inverse kinematics maps the Cartesian
coordinate position and orientation of the end-
effector into the joint angles of the manipulator. The
set of all points reachable by the manipulator is
called manipulator workspace.

The forward kinematics always has a unique
solution. But the inverse kinematics can result in
none, just one, several, or even infinite solutions.

A detailed discussion of the subjects of this
subsection is found in [1].

3. METHODOLOGY

In this paper, only the inverse kinematics for the end-
effector positioning is addressed. The inverse
kinematics for orientation will be left for future work.
In this work, two case studies are done using a well-
known non-redundant manipulator, the PUMA 560.

In the first case study the objective is to
experimentally adjust the GA for the problem. It is
particularly concerned about the chromosome
encoding, the fitness evaluation and the constraints.

The results of this study are compared with the
results of traditional technique [1].

In the second case study, the basic methodology for
applying GAs is used, but the manipulator is
modified. The modification is the inclusion of a link
in the extremity of the manipulator that transforms it
in a redundant manipulator for positioning. The
objective here is investigate the applicability of GA
to this kind of problem.

For both cases, the inverse kinematics problem is
repeated for all points of four different trajectories. It
is supposed that those consecutive points are near.
For each point (p1, p2, ..., pn) the GA is run until a
desired precision is reached. After the point pk is
reached, the GA uses the “knowledge” in the
population to find the next point pk+1. The first point
of the trajectory is searched in whole manipulator
workspace, thus it is expected to be rather difficult.
After that, the search space is restricted to a region
surrounding the last point found. The restriction of
the search space is accomplished by means a
modification in the joint limits, that will be discussed
later. This makes the GA runs faster, and an
experiment was done to prove this.

3.1 The genetic algorithm

3.1.1 Chromosome encoding and constraints

The variables of the problem are the joint angles,
shown in figure 1.The chromosome encoding for the
non-redundant manipulator is detailed in table 1 and
for the redundant manipulator, in table 2. The
precision required is 0.01 degree, an acceptable value
for real problems.

Figure 1: Joint angles.

Gray code was used instead of natural binary code, in
order to avoid disruptive mutations [5]. It was
empirically observed that GAs using the Gray code
converged to a accept solution faster than GAs that
use the natural binary code.

Table 1: Variable coding for non-redundant
manipulator.

Variable Min Max Bits Precision
Tetha1 -170o 170o 16 0.00519o

Tetha2 -225o 45o 16 0.00412o

Tetha3 -250o 75o 16 0.00496o

Table 2: Variable coding for redundant manipulator.
Variable Min Max Bits Precision
Tetha1 -170o 170o 16 0.00519o

Tetha2 -225o 45o 16 0.00412o

Tetha3 -250o 75o 16 0.00496o

Tetha4 -135o 135o 16 0.00411o

Tetha5 -100o 100o 16 0.00305o

The search space is about 1014 cases for the non-
redundant manipulator and about 1024 for the
redundant manipulator. Although these search spaces
are not a big challenge for GAs, it is important to
emphasize that the search is repeated for every point
of a trajectory. The four trajectories tested in this
work have 251 points each.
For the non-redundant manipulator, the joint angles
are obtained by:

212
i

bits
ii

ii

RangeRangeValue
Center −

−
⋅

+=θ [1]

where: θi is the angle of joint i, Centeri is the average
value of θi, Valuei is the i-th value in the
chromosome, Rangei is the range of θi and bits is the
number of bits used to encode each gene. For
example, if θi can assume values ranging from 20 to
100, Center is 60 and Range is 80.

The joint rotation limits are handled directly in the
coding, so any solution determined by GA is
physically feasible.

To increase the speed of GA, the search space is
restricted to a region near to the last point found. This
operation is done by reducing the value of Range and
changing the value of Center. The joint limits are
checked to avoid coding of non-feasible joint values.

3.1.2 Objective function

Under this aproach the inverse kinematics problem is
a minimization problem, It is aimed to minimize the
distance between a desired point and the point
obtained with forward kinematics using the joint
angles decoded from the chromosome. The distance
is computed by:

222 *)(*)(*)(zzyyxx ppppppDistance −+−+−= [2]

where px*, py* and pz* are the coordinates of the
desired position of the end-effector, and px, py and pz

are the coordinates of the point obtained with
forward kinematics. For the non-redundant
manipulator the equations of forward kinematics are:

[]
[]

23422233

13234233221

13234233221

cossensen

cossencoscossen

sensencoscoscos

daap

ddaap

ddaap

z

y

x

−−−=

+−+=

−−+= [3]

Where d3, d4, a2 and a3 are constants of the
manipulator, cos1, cos2 , cos23, sin1 sin2 and sin23 are
respectively cos(θ1), cos(θ2), cos(θ1+ θ2), sin(θ1),
sin(θ2) and sin(θ1 + θ2).

For the redundant manipulator the equations of
forward kinematics are more complex:

px= a2c1c2 + a3c1c2c3 - d3s1 - d4c1c3s2 - d7c1c3c5s2

 - d4c1c2s3 - d7c1c2c5s3 - a3c1s2s3

 - d7c1c2c3c4s5 + d7c1c4s2s3s5 – d7s1s4s5

py= d3c1 + a2c2s1 + a3c2c3s1 - d4c3s1s2 - d7c3c5s1s2

 - d4c2s1s3 - d7c2c5s1s3 - a3s1s2s3

 - d7c2c3c4s1s5 + d7c4s1s2s3s5 + d7c1s4s5

[4]

pz= -(d4c2c3) - d7c2c3c5 - a2s2 - a3c3s2

 - a3c2s3 + d4s2s3 + d7c5s2s3+ d7c3c4s2s5

 + d7c2c4s3s5

Where d3, d4, a2 and a3 are constants of the
manipulator, ci and si are respectively cos(θi) and
sin(θi)

The objective function is clearly nonstationary: the
algorithm is executed until the distance is smaller
than a given tolerance (0.002 in = 0.00508 cm), then,
the values of px*, py* and pz* are updated for the
next point of the trajectory. This changes the
environment in which the GA has to optimize, thus
enforcing it to adapt the search to the new objective.

3.1.3 Fitness function

GAs, by default tries to maximize a given function.
In order to turn the objective function into a
maximization problem, the fitness function used is:

Fitness = C – Distance , [5]

where C is a constant greater than the maximum
distance between any points within the manipulator's
workspace. For this study the value used is 100.

3.1.4 Stop criteria

There are two stop criteria. The first is when the
complete joint trajectory is successfully generated.

The second one is when the GA reaches the upper
limit for generations. This limit is set to 10,000 for
the non-redundant and 20,000 for the redundant
manipulator. This last stop criterion enables the GA
to stop by timing out in case of non-convergence.
Notice that if the point searched isn’t in the
workspace, the convergence will not happen.

3.1.5 Genetic operators and parameters

The population size is 100. The genetic operators are
uniform crossover and mutation, which are applied
with probabilities of 1.00 and 0.01 respectively. The
selection method used is tournament selection, with
tourney-s ize 15. This method keeps reasonable
diversity levels throughout generations without
excessive selective pressure. A high genetic diversity
in the population is necessary since the GA does not
stop when finding a point in the trajectory, but only
when all points are found.

3.2 Test trajectories

The trajectories described in table 3 are used to
evaluate the GAs for the redundant and the non-
redundant manipulators. Figure 2 illustrates these
trajectories.

Table 3: Test trajectories
N#

points
Timing Equations

Traj.
#1 251

0 to 2.5 s
step =
0.01 s

Px=7+t
Py=7-t/2
Pz=-17+2*t

Traj.
#2 251

0 to 5 s
step =
0.02 s

Px=7+cos(t*3)*t/5
Py=7+sin(t*3)*t/5
Pz=-17+2*t

Traj.
#3 251

0 to 2.5 s
step =
0.01 s

Px=7+sin(cos(t*2))
Py=7+t*cos(t)/2
Pz=-7+2*t*cos(t)*sin(t)

Traj.
#4 251

0 to 2.5 s
step=
0.01 s

Px=8+3*cos(t*4)
Py=8
Pz=-13+t

Figure 2: (A) Test trajectory #1, (B) test
trajectory #2, (C) test trajectory #3.

4. RESULTS

Figure 3 shows the distance between each point of
trajectory 1 and each point generated by the GA for
the non-redundant manipulator, as generations goes
by. The results are similar for the other trajectories
and also for the redundant manipulator.

Table 4 presents the results of a run for the non-
redundant manipulator case with and without range
reduction. The number of generations necessary is
indicated by Gen, the flag Compl indicates wheater
the trajectory was completed or not, and Gen/Pt
indicates the average number of generations to reach
each point. RR means that GA was run with the range
reduction technique. Table 5 presents the results for
the redundant manipulator case.

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

0.0022

0 0.5 1 1.5 2 2.5

Figure 3: Distance (inches) versus time (s).

Table 4: Results of non-redundant manipulator.
Gen Compl Gen/Pt

No
RR

9895* 18.7% 210
Traj.

#1
RR

2000 100% 7
No
RR

9877* 16.3% 240
Traj.

#2
RR

6678 100% 26
No
RR

9911* 19.9% 198
Traj.

#3
RR

4245 100% 16
No
RR

9945 15.5% 255
Traj.

#4
RR

8587 100% 34

*Did not reach the result after 10000 generations.

Table 5: Results of redundant manipulator.
Gen. Compl. Gen/Pt

Traj. #1 7309 100% 29
Traj. #2 13137 100% 52
Traj. #3 10100 100% 40
Traj. #3 13817 100% 55

All runs reported here was done using a standard
Pentium/300Mhz. For all trajectories of the non-
redundant case, the running time was less than 1
minute. For the redundant manipulator a run took less
than 3 minutes.

For the non-redundant manipulator, the first point of
the test trajectories #1 and #2 was obtained in 359
generations, for test trajectory #3 it was necessary
335 generations and for test trajectory #4 it was
necessary 356 generations. For the redundant
manipulator, the first point of the test trajectories #1
and #2 was obtained in 689 generations, for test
trajectory #3 it was necessary 902 generations and
for test trajectory #4 it was necessary 402
generations.

The coincidence of the number of generations to
obtain the first point of the trajectories 1 and 2 is due
to the fact that the first points of these trajectories are
the same (7, 7, -17).

5. DISCUSSION AND ANALYSIS

Figure 3 shows that the distance between a desired
point and the point found by GA oscillated between
the specified tolerance and very small values (of
order 10-4), thus giving an extremely satisfactory
precision in the positioning.

The trajectories generated for the non-redundant
robot were compared with the exact results obtained
by means of the conventional method for inverse
kinematics (closed form solution) and they were
indistinguishable except by the tolerance value.

As expected, the number of generations to obtain the
first point of a trajectory was much larger than the
number of generations needed to reach the other
points. An interesting result is that, in the non-
redundant manipulator case, in approximately 25% of
the points, the result was obtained with only one
generation, what indicates that the point was already
in the previous population.

As presented in table 4, the use of range reduction
caused a sensible acceleration of the GA, finding
points of the trajectory with approximately one tenth
of the number of generations necessary without the
use of this technique.

6. CONCLUSIONS AND FUTURE WORK

Using GAs, successful joint trajectories were
generated for both redundant and non-redundant
manipulators, in three different test trajectories.

The first case study, using a manipulator for which a
closed form solution was known, was important in
order to conveniently adjust the GA, and compare
results. The working hypothesis that the same
parameters of the GA working for the first case study
would work as well for the second, was found to be
valid. One could infer that this methodology of using
GAs can also be valid for other similar problems. For
manipulators (particularly redundant ones) for which
the inverse kinematics is unknown or too complex to
devise, the use of AGs in the way shown in this work
is certainly a valid alternative.

It was shown that using the range reduction
technique, the GA was dramatically accelerated.

Further work can address other speed improvements
in the basic algorithm aiming to generate trajectories
in real-time. Among these, specific operators as well
as parallel processing can be cited. Future work will
cover more complex problems of manipulators,
including the generation of trajectories optimized
according to some criterion such as minimization of
joint movements or singular points avoidance.

7. REFERENCES

[1] Craig, J.J., Introduction to Robotics Mechanics
and Control. . Reading, MA: Addison-Wesley,
1989.

[2] Da Silveira, C.H., Coelho, L.S. & Campos,
M.F.M., The use of genetic algorithms for the
evaluation of inverse kinematics of
manipulators, Anais do 1º Congresso Brasileiro
de Redes Neurais, Itajubá, Brasil, 1994.

[3] Goldberg, D.E., Genetic algorithms in search,
optimization and machine learning. Reading,
MA: Addison Wesley, 1989.

[4] Parker, J.K., Khoogar, A.R., Goldberg, D.E.,
Inverse Kinematics of Redundant Robots using
Genetic Algorithms, Proc. IEEE International
Conference on Robotics and Automation, pp.
271-276, 1989.

[5] Forrest, S., Genetic Algorithms: Principles of
Natural Selection Applied to Computation,
Science, vol. 261, pp. 872-878, 1993.

7

8

9

10

0

0.5

1

1.5

-17

-16

-15

-14

-13

-12

4

6

8

10

12

7

7.5

8

8.5

9

-13

-12.5

-12

-11.5

-11

-10.5

6

6.5

7

7.5

8

6

6.5

7

7.5

8

-18

-16

-14

-12

-10

-8

-6

6

6.5

7

7.5

8

5.5

6

6.5

7

7.5

-10

-9

-8

-7

-6

