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Cognitive feedback is a technique used for qualitative learning that has proven
to be useful to train medical students. In this work we report the application of
genetic algorithms to simulate this technique, using a knowledge-based system as
the learner, in the domain of coronary artery disease diagnosis. The prototypical
description of the disease employs fuzzy variables, as well as crisp ones. To evaluate
the performance of the system, a similarity-triggered inference method is used over
a diagnosed case-base. Results presented showing the e±ciency of this approach,
lead us to believe that this paradigm is useful for a wide range of applications.
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1 The Learning Paradigm

1.1 Quantitative versus qualitative learning

Most developed knowledge-based systems are strongly domain speci¯c: small
changes in the application domain usually re°ect large changes in the system's
knowledge-base. An intensive human intervention to deal with these changes
has to take place, in order to properly re-adjust the knowledge-base. This is
what Holland 1 has called \brittleness". Actually, \brittleness" basically re-
°ects the incapacity of some current computational systems of generating new
knowledge or adapting current knowledge, by means of its own acquired experi-
ence. In contrast, one of the most startling characteristic of human intelligence
is its ability to learn by experience and evolve its own knowledge, when inter-
acting with the environment. Therefore, the learning capability turns out to
be a necessary feature for high MIQ (Machine Intelligence Quotient) systems.
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This is specially true for systems designed to be used in noisy or changing en-
vironments. In fact, there are several di®erent, but somewhat superimposed,
de¯nitions of learning to span many kinds of processes. Here, the meaning of
learning is understood in the sense stated by Carbonell 2:

\A system (biological or mechanical) is said that to learn if it can
modify its behavior after a set of experiences such that it can per-
form a task either more accurately or more e±ciently than before,
or perform a new task beyond its previous capabilities."

Based on this de¯nition, two forms of learning can be devised:

² Quantitative learning: infer new knowledge, not initially belonging to
the knowledge-base.

² Qualitative learning: improve performance, re¯ning the current knowl-
edge-base.

The ¯rst could be exemplī ed as a rule-based system that applies deduc-
tive inference to generate new facts that will be further integrated into the
knowledge-base. A classical example of the second form is a neural network,
which, starting from scratch (no knowledge), learns patterns using some gra-
dient descent technique, achieving better performance the more trained it is.
Qualitative learning is generally achieved by active experimentation rather
than passive observation. It is related to the correction of observed devia-
tions from a desired behavior by means of repetitive training. In this type of
learning, feedback plays a key role because it drives the learning process.

An important point about learning, although not much clear, is its re-
lationship to a measurement procedure. It is always necessary to measure
performance so as to evaluate whether or not an improvement has occurred
and in what extent. This is true for both human and machine learning.

1.2 Cognitive feedback as a qualitative learning paradigm

There has been a close link betweenCognitive Science and Arti¯cial Intelligence
since the beginning. Machine learning techniques have been inspired in human
learning paradigms. In the other hand, computer simulations have helped
researchers understand how humans learn.

Cognitive feedback is a technique that has been applied to human learning
and has been object of study by some researchers (see Balzer et al 3, for in-
stance) since it was ¯rst proposed by Todd and Hammond 4. In this technique,
a judgment is considered as a function that takes into account the multiple
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features that describes the problem. Each feature is related to the judgment
(and the actual outcome) through a weight. By means of the judgment of
a series of cases, one infers weights related to the features. Correct weights,
relating features to the actual outcome, are then presented to the learner to
provide a feedback. Although the practical implementation of this technique
allows di®erent variations, the feedback provided to the learner is the main
factor of judgment accuracy improvement, as reported by Hammond 5.

The use of this technique as a pedagogical instrument in medical domain
has been successfully reported, as for instance Poses et al 6 and Wigton et
al 7. The e®ect on medical students was a qualitative improvement of their
diagnostic performance of cases in the speci¯ed domain.

The main objective of this work is to simulate a kind of cognitive feedback
technique, using a knowledge-based system as learner, which performance it is
expected to improve.

2 Framework for diagnosis

2.1 Motivation and knowledge representation

Evidences have shown that expert clinicians perform, although not always
conscientiously, diagnoses based on analogy with memorized prototypes of dis-
eases8;9;10. When analyzing a case, the more similar it is to a disease prototype,
the more plausible will be the possibility of the patient to have the disease.

Based on this idea, a framework for diagnosis in medical domain was de-
veloped 11. In this system, knowledge is represented in a frame structure as
a disease prototype. Each slot of the frame comprises a relevant information
(attribute) for the ¯nal diagnosis. All attributes have a value which repre-
sents the typical ¯nding for a positive diagnosis. A weight is attached to each
attribute of the frame, representing the discriminatory power (or \diagnostic-
ity") of current information for ¯nal diagnosis. Therefore, a disease prototype
is represented by a set of m triplets attribute-value-weight (D = fai; vi; wigm).
A clinical case is described by a set of attribute-value pairs of the same nature
of the prototype and, for a given patient, P = fai; pigm. The set of pairs
value-weight is used in the computation of the similarity level between a pa-
tient's data (P ) and the disease prototype (D), using syntactic analogy a and

aThis kind of analogy is also known as surface analogy and is related to the attributes
that are syntactically identical in two objects, not accounting for contextual or structural
factors.
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a geometric model, as in equation 1, for the Euclidean distance.

¢(P; D) =

vuut
mX

i=1

·
wi:

µ jpi ¡ vij
range(vi)

¶¸
(1)

The set fai; vi;wig for each prototype is elicited from the domain expert,
in a three-step procedure: ¯rst the relevant attributes, followed by their typ-
ical values for that disease, and ¯nally, the relative weights. Representing
knowledge using prototypical approach provides a structured representation
for classes of diseases. The adequacy and expressivity of this representation is
remarkable for using with the similarity-based inference engine.

2.2 Coronary artery disease

Coronay artery disease (CAD) is a common cause of disability and mortality
in the adult population. It is associated with risk factors such as smoking,
high cholesterol, arterial hypertension, obesity, diabetes and physical inactiv-
ity. The main symptom in CAD is chest pain, but unfortunately this symptom
is a common one for a group of other frequent diseases as well. Diagnosing
CAD is not an easy task, even for the experienced physician. A thorough med-
ical examination includes a detailed clinical history and physical examination,
complemented by non-invasive laboratory investigations (exercise test, choles-
terol and glucose levels, echocardiography and nuclear imaging). Coronary
arteriography, an invasive and de¯nitive procedure, is indicated only when a
surgical intervention (coronary artery bypass grafting) is planned or the infor-
mations from clinical assessment and non-invasive procedures are not su±cient
to conclude a diagnosis. In the real-world, physicians must live with uncer-
tainty which is counteracted by increasing expertise and experience.

2.3 CAD prototype with fuzzy variables

Several factors are accounted for the diagnosis of CAD, including symptoms,
observed signals and complementary test results. Depending on the physician's
experience and available resources, some factors may be considered, others not.
In this work, it was used a database of 303 CAD cases b that was previously
employed in classi¯cation studies. This database contains 13 attributes which
description and respective values characterizing a typical CAD case are sum-
marized in table 1. All attributes are normalized in the [0;1] interval, and

bIn fact, only 297 cases were used, the 6 other instances were eliminated due to missing
attributes.
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Table 1: Description of the coronary artery disease (CAD) prototype (? see text).

# variable typical CAD type
1 age > 45 fuzzy?
2 sex male binary
3 chest pain typical angina numeric
4 resting systolic blood pressure > 140 mmHg fuzzy?
5 serum cholesterol > 240 mg/dl fuzzy?
6 fasting blood sugar > 120 mg/dl binary
7 resting ECG T inversion or ST elevation numeric

or ST depression > 0:05 mV
8 maximum heart rate achieved < 130 bps fuzzy?
9 exercise induced angina yes binary
10 induced ST depression > 1:0 mm fuzzy?
11 slope of ST in peak exercise down sloping numeric
12 colored vessels in °uoroscopy 3 numeric
13 thallium results ¯xed defect numeric

further combined by the analog reasoner of the inference engine (see ¯gure 4).
Details of the implementation of the analog reasoner are beyond the scope of
this work and are reported elsewhere 12.

In medicine, more than in physical sciences, it is commonplace uncertain
reasoning. Several factors contribute to this: ¯rst, clinical ¯ndings may largely
vary from case to case. Second, there is inherent fuzzyness in some clinical vari-
ables. Third, a diagnosis may have to be done basing on incomplete, inaccurate
or even inconsistent data. Last, all patient's data is under the subjectiveness
of the physician's interpretation.

In clinical diagnosis, like other real-world applications, frequently we have
to deal with concepts with ill-de¯ned boundaries. Humans have a natural
ability to assign grades of membership to complex concepts without being
explicitly aware of this. The physician expert whom the values of table 1 were
elicited from, could express better his knowledge about the diagnosis using
intervals of uncertainty for some attributes. Those considered qualitatively
were attributes #1, #4, #5, #8 and #10. Some mathematical approaches have
been employed to deal with uncertainties in medical domain (see Hughes 13,
for instance), but a more natural one for this case is to use fuzzy hedges 14.
Considering those attributes as linguistic variables, a fuzzy set described by a
membership function can be constructed. To model membership functions, a
parameterized approach devised by Dombi 15 was used, as follows:
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Where v is the in°ection point of the S-shaped curve, ¸ is a measure of sharp-
ness of the curve, and a and b represent lower and upper bound of support such
that a < b, and ¹(a) = 0 and ¹(b) = 1, for an ascending curve; or ¹(a) = 1 and
¹(b) = 0 for a descending curve. The domain expert has arbitrarily assigned
values to parameters a and b, while v and ¸ were respectively set to (b ¡ a)=2
and 1 (see table 2).

Table 2: Values of the Dombi model for the CAD prototype. (A = ascending curve, D =
descending curve).

variable parameter type
a b ¸ v

age 30 50 1 40 A
resting blood pressure 120 160 1 140 A
serum cholesterol 180 220 1 200 A
maximum heart rate achieved 110 150 1 130 D
induced ST depression 0.5 1.5 1 1.0 A

In this approach, it is considered separately the monotonical increasing and
decreasing parts of a membership function. Thus, for a S-shape curve, either
the upper or the lower part of equation 2 is used to represent the uncertainty
interval, and for the rest of support, ¹(x) is either 1 or 0. Actually, fa; b;¸; vg
represent a family of curves, as shown in ¯gures 1 and 2 for the interval [0;1],
and some values of parameters ¸ and v.

3 Implementation

3.1 Genetic algorithms overview

Genetic algorithms 16;17 (GAs) are a search technique inspired in Darwinian
natural selection principle, and have been applied to several classes of opti-
mization problems.

Parameters of a problem, representing a candidate solution, are coded into
a string, usually of ¯xed length ¸ and using the binary character set f0; 1g.
Strings are individuals that compose a population of size n. Each individual
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Figure 1: Ascending curves of membership functions representing the uncertainty interval
[0; 1] for three di®erent values of ¸.

at
i = f0; 1g¸ is evaluated according its ability to provide an useful solution, by

means of an objective (or ¯tness) function f(at
i).

GAs work iteratively, where each cycle t corresponds to a new generation of
individuals, starting with a ramdomly choosen population P (0) = (a0

1; : : : ; a
0
n).

Every new generation P (t + 1) = (at+1
1 ; : : : ; at+1

n ) is a result of a reproduction
process to which was submitted the former population P (t) = (at

1; : : : ; a
t
n).

The reproduction process undergoes a selective pressure, resembling the natu-
ral selection principle of biological evolution. This implies that individuals will
be selected as parents according to a probability proportional to its ¯tness, as
in equation 3. By means of genetic operators, such as crossover and mutation,
selected parents produce o®springs. A population of individuals is then evolved
throughout generations. As generations go by, the population is expected to
converge to individuals of high ¯tness level, and thus, good solutions.

prob(at
i) =

f(at
i)Pn

k=1 f(at
k)

(3)
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Figure 2: E®ect of varying v (in°ection point) on an ascending curve of membership function
in the interval [0; 1].

GAs are included in a class of techniques known as Evolutionary Algo-
rithms, which are distinguished by their parallel investigation of the search
space, by manipulating a population of possible solutions simultaneously. Be-
ing a general-purpose search method, the applicability of GAs is narrowed
when problem-specī c knowledge is incorporated to the system aiming perfor-
mance improvement. For a given problem, the performance of the algorithm
is severely in°uenced by a number of parameters, which have to be carefully
choosen. Besides, two other factors, how an individual is encoded and the
objective function, play an important role in the overall functioning, and will
be discussed in the next sections.

3.2 Encoding and running parameters

The most usual representation for GAs is the binary encoding, although oth-
ers have been used for speci¯c purposes. The set of weights of CAD proto-
type was encoded into a 52-bit binary string representing an individual, thus,
each real-valued weight was mapped using 4 bits length. The choice of this
representation has no biological inspiration, but relies on the fact that this
quantization step has acceptable accuracy for the problem. Figure 3 shows
how weights are encoded into the chromosome. This representation yields a
search space of 252 ¼ 1016 points, a reasonably large space for conventional
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Figure 3: Chromosome representation.

methods. A GA-based method for searching the global optimum is then spe-
cially suited, considering not only the high dimensionality of the problem, but
also its multimodal nature. In fact, it is not always expected to ¯nd the global
optimum, but in many cases a near optimal solution within some percentage of
the optimal is satisfactory. This approach was called \satis¯cing" by Simon18,
in order to indicate that the candidate solution satis¯es minimal requirements
and su±ces to reasonably solve the problem.

A GAs module is responsible for applying genetic operators in order to
constitute a population of individuals that will be evolved throughout genera-
tions. The probability of reproduction of each individual is proportional to its
performance, following equation 3. Each individual of each generation is evalu-
ated by an objective function (see section 3.3), and its ¯tness is computed. At
the end of each generation, the best individual is decoded to update weights
of CAD prototype. Figure 4 shows a simple block diagram of the system.

¡¡

CAD

6

¾

?

-
Case-base

Inference
Engine

Algorithms
Genetic

Module

Prototype

update

weights

fai; vi;wig

cases performance

Figure 4: Block diagram of the system for cognitive feedback learning.
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The set of weights was initially set to a random number between 0:00 and
1:00, representing absolute ignorance about relative relevance of each informa-
tion. When applying GAs to optimize the prototype's set of weights, a kind
of qualitative learning is implemented, simulating the cognitive feedback tech-
nique, previously mentioned. GAs can be run using a large range of control
parameters. Changing parameters will deeply a®ect the performance of the
algorithm. Inadequate settings may induce premature convergence as well as
\slow ¯nishing", the opposite problem. Several trials with di®erent sets of
parameters were done, and the best results was observed when the following
parameters were used:

² initial population: randomly generated

² crossover probability: 1.0

² mutation probability: 0.005

² type of selection: proportional, non-elitist

² population size: 100 individuals

² generation gap: 1 (non-overlapping populations)

² length of each individual: 52 bits, ¯xed

² maximum number of generations: 500

3.3 Objective function

The task of classifying unknown cases of CAD may involve two types of errors:
a healthy patient being misclassi¯ed as sick (false-positive), and a sick patient
misclassi¯ed as healthy (false-negative), while a correct classī cation should
lead respectively to true-positive and true-negative. In medical domain, two
parameters are used as performance measures of a classī er test: sensitivity
(S) and specī city (E), de¯ned as follows:

S =
tp

tp + fn
(4)

E =
tn

tn + fp
(5)

where tp; tn; fp; fn stands respectively for true-positive, true-negative, false-
positive and false-negative. Sensitivity measures the fraction of patients having
CAD that will be correctly detected by the system, and speci¯city measures
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the fraction of healthy patients who will be correctly identī ed as having no
disease.

If sensitivity is increased, patients having no disease may be misclassī ed as
having disease (increases false-positive rate). On the other hand, if speci¯city
is increased, patients having CAD may be misclassī ed as healthy (increases
true-positive rate). Thus, sensitivity and speci¯city are mutually constrained.

A graphics plotting S versus (1 ¡ E) results in a concave curve known
as \receiver-operating characteristic" curve (ROC). The optimum point for S
and E depends on the relative costs associated with the misclassi¯cation of
diseased patients as healthy, versus healthy patients as diseased. Here, costs
are generally related to health factors rather than economic factors. For the
purposes of this work, the objective is to ¯nd the point in the ROC curve where
both S and E are maximum. At this point, the maximum number of correct
classi¯cations will be attained, not biasing either S or E . Therefore, a trade-o®
between these two performance measures has to be considered, leading to a
kind of multicriteria optimization.

The objective function is the natural selection criterion, and should return
a single value representing the ¯tness level of the individual. Several combi-
nations of the sensitivity and speci¯city measures were considered, and better
results were obtained using simply the product between sensitivity and speci-
¯city, as shown in equation 6. \Better results" have a meaning in accordance
to the previous considerations about relative costs.

fitness = S:E (6)

This function considers both measures simultaneously and, as they are
normalized in the [0;1] range, ¯tness values are also normalized in this range.
To compute sensitivity and speci¯city for an individual (set of weights), a
program routine loops over a data base of 297 previously diagnosed cases,
applying the methodology described by Lopes et al 12. Figure 5 shows the core
pseudocode of the evaluation procedure.

4 Discussion and conclusions

Comparing initial diagnostic performance of CAD diagnostic system (with all
weights randomly choosen), to the best-¯tted set of weights (of all genera-
tions), it was reported a signī cant improvement in performance. An accu-
racy of 81:5% of correct diagnoses was achieved by this method, slightly out-
performing other methods previously reported in literature, using the same
database 19;20;21;22. Actually this seems to be around the upper limit for clas-
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== evaluate k-th individual: fai; wig
FOR n = 1 TO 297 DO

== compute diagnosis using case(n) and individual(k)

outcome = diagnosis(case(n),individual(k))

== compare outcome with correct diagnosis and update counters

compute tp, fp, tn, fn

== compute ¯tness for individual k

S = f(tp,fp,tn,fn)

E = f(tp,fp,tn,fn)

fitness(k) = f(S,E)

ENDDO

Figure 5: Evaluation procedure of an individual (set of weights).

sī cation accuracy using this database. The learning curve shown in ¯gure 6
displays two points where the best accuracy was attained.

Considering the noisy feature of the database, an improvement in the ro-
bustness of the system was observed when fuzzy variables were used instead of
crisp ones. Furthermore, the use of fuzzy concepts has proved to be useful also
in the elicitation task phase. We believe that for real-world problems, specially
medical diagnosis, fuzzy thinking is an essential feature for computational sys-
tems aiming to achieve human-like performances.

We point out training the system as the major drawback, because setting
GA control parameters has shown not to be trivial. Furthermore, as the ob-
jective function has revealed highly multimodal, additional care must be taken
to assure proper convergence. As in other real-world problems, it is di±cult
to establish an optimum balance between selective pressure, which acceler-
ate convergence, and population diversity, which assures proper search space
exploration. This conclusion is in accordance with researchers that consider
setting GA control parameters an ad hoc problem 23;24. Notwithstanding, re-
sults presented demonstrate the feasibility of GA-based learning to improve
the diagnostic ability of the system.

Although a threshold was used to discriminate diagnosed cases into two
distinct classes (healthy or not healthy), the system is able to provide a contin-
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Figure 6: Learning curve showing the percentage of correct diagnoses as a function of the
generation epoch.

uous classi¯cation, allowing a graceful response as input data quality degrades.
This is possible due to the similarity-triggered analogical reasoner and the pro-
totypical representation of the knowledge-base. The outcome provided by the
system may be roughly understood as a membership degree to a multidimen-
sional fuzzy set of a typical CAD patient.

The core system has proved to be an e±cient paradigm to deal with com-
plex diagnostic tasks, and the objective of simulating the cognitive feedback
technique was sucessfully achieved. The credible performance displayed by the
system, encourages both further improvements and its application to other
domains.
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