
Federal University Of techkigh - Paraná – UTFPR

Academic Department of Eletronic – DAELN

Academic Department of Informatics – DAINF

Computing Engineering
Integration Workshop 3 (EEX23) – S71 – 2023/1

Technical Report
Delivery Safe Box

Luis Camilo J. Moreira – luismoreira@alunos.utfpr.edu.br

Frank E. H. Bloemer – frank.e.h.bloemer@gmail.com

Raissa A. N. Higa – rhiga.2018@alunos.utfpr.edu.br

Ricky L. Habegger –ricky@alunos.utfpr.edu.br

June, 2023

Abstract

With the advances of internet, these days we can buy countless products
anywhere and at any time. However, we cannot receive at any time the
product we are expecting. This situation brings unwanted consequences,
such as packages being returned to the delivery company if the recipi-
ent is absent or busy at the moment, packages being dropped (containing
some high-value product) or delivery being made to some neighbor (need
to have trust in the neighbor). Therefore, focusing on small condomini-
ums without doorman, the Safebox - a safe delivery box project intends to
solve this problem, providing an asynchronous delivery system, so that the
recipient doesn’t need to be present at the same moment of the delivery,
aiming to be a safe and assertive system for receiving deliveries. In which,
it will be a system consisting of safes, being handled by a control system,
in which the safes can be opened by any delivery person. In addition, the
system will notify the specific user that his or her package has arrived, and
the user will be able to pick up the product at another time in a secure
way, by means of authentication systems. Thus, the report in question is
about the development of the project, which consists of 5 parts, being the
Safe system, which represents an actual safe, the Control system, which
has the purpose of managing the safes, as well as the facial recognition
and biometric module for unlocking the safe, besides interacting with an
application on a cloud server. To serve the end users, there is a web ap-
plication for managing the system, being accessed only by the manager, as
well as a mobile application, so that users can interact with the system and
make reservations of the safes for their purchased packages.

1 Introduction

This project was developed for the Integration Workshop 3 university discipline,
of the Computer Engineering course at UTFPR, Curitiba campus.

As motivating factors for the development of this prototype, we can cite the
following problem: in today’s world, with the advent of the internet and mobile

1

Technical Report: Safebox 2

devices, we can buy online whenever and wherever we are, without restrictions.
However, we are not always at home when the packages arrive at our residence,
or we are busy and cannot take delivery. When this happens, some unpleasant
situations can occur, such as the package getting dropped, being delivered to a
neighbor, or simply returning to the sender.

Taking these factors into consideration, it was possible to define our mission
and objectives: to enable an asynchronous delivery system for residents of small
condominiums or even residences, providing greater care and security for pack-
ages ordered and keeping a log of the actions of this system for security and su-
pervision.

Figure 1: High-level diagram of how the project works

Considering these problems and motivations, it was possible to develop the
project described in this document. Analyzing the diagram in Figure 1, it is pos-
sible to understand how the actors (Admin User, Resident User and Delivery-
man) interact with the central and parallel modules, as well as how they interact
with each other and the technologies used to make this possible.

Technical Report: Safebox 3

The Resident User can interact with the Delivery Safe Box (via keyboard, fa-
cial recognition or fingerprint recognition), as well as interact with the mobile
application to register/log in, reserve vaults, register deliveries and other func-
tionalities.

The Admin User can interact with the Delivery Safe Box in the same way as
the Resident User, and can also access the Web Application for management and
system control functions.

The Deliveryman can place deliveries inside the safe box with the single-use
code he receives in the order description.

The Mobile Application and Web Application interact with each other and
with the Delivery Safe Box via backend applications, which will be better de-
scribed in the next sections of this technical report.

The Delivery Safe Box integrates the vaults (up to 6), Power System (electrical
components) and Control System (camera, fingerprint reader and camera).

Presenting a complete use case, first the Admin must register the user (by
fingerprint, facial registration, or secret password to be entered on the keyboard)
then the user can access the system via Smartphone App, reserve a safe for a
certain period, in which he waits for the delivery, then take the generated code
and include it in the "complement" field of an online purchase address, then the
deliveryman delivers (opening the safe by entering the one-time secret code),
and then the user is informed by app notification, and can go and collect his
delivery using facial recognition, fingerprint, or secret code, ending the use of
the system.

2 Project Specification

The project was separated into five main divisions there are the Safe system, that
represents a single vault, the control system, that is the controller of the vaults
and intereacts with the backend server application and the backend server ap-
plication, that manages the data between all parts. Finally, there are the parts
that relate to the end user,that are the web application, used by admin user for
management purposes and the mobile application, that is used by the resident
users.

Furthermore, the requirements of all main project parts are described in the
sections 2.1, 2.2, 2.3 respectively and in the section 2.4 is contained the anti-
requirements of the project.

2.1 Mechanical Requirements

2.1.1 Mechanical Functional Requirements

• MF01 - The system’s safe must have a lock

• MF02 - The system must lock the safe after an object is dispatched inside
of it

Technical Report: Safebox 4

• MF03 - The system’s safe must have an internal scale

• MF04 - The system’s safe must have a sensor to detect break-in attempts

• MF05 - The system must provide information about how use the system
for the residents and the courier

• MF06 - The system must provide a QRCode with contact information of
the admin in cases of exceptional issues

• MF07 - The system must have a control system for control the vaults

• MF08 - The system must have a primary safe with complete behavior

• MF09 - The system must have a secondary safe, that will simulate a second
safe, for testing purposes

2.1.2 Mechanical Non-Functional Requirements

• MNF01 - The system must support an 25x25x20cm sized object

• MNF02 - The system must support object from 200g to 20Kg

• MNF03 - The system must have a full safe and a second safe with features
adapted for cost and prototype purposes

• MNF04 - The system must have inform how use the system through a ban-
ner

2.2 Hardware Requirements

2.2.1 Hardware Functional Requirements

Safe system:

• HRF01 - The safe system must allow the courier to unlock the safe with
one use code inserted on keyboard.

• HRF02 - The safe system must identify if the safeis being force into with a
accelerometer sensor

• HRF03 - The safe system must identify if the safe is open or close with a
limit sensor

• HRF04 - The safe system must identify if the safe contains a package with
a load cell by weighting the delivery

• HRF05 - The safe system must allow users to view information of the safe
system through a LCD Display

Technical Report: Safebox 5

• HRF06 - The safe system must sound an alarm when it detects that the
safe being forced

• HRF07 - The safe system must lock/unlock the safe with a solenoid lock

• HRF08 - The control system must control the safe system, the recognition
module and communicate with the server using a microcontroller

• - HRF09 - The safe system must control the hardware components with a
microcontroller

Control system

• HRF10 - The control system must allow the user unlock the safe with fin-
gerprint recognition by a fingerprint module

• HRF11 - The control system must allow the user unlock the safe with facial
recognition by a camera

Secondary Safe (Mock up):

• HRF13 - The secondary safe will be simply for demonstration purposes.

• HRF14 - The secondary safe must have a LED to emulate the electronic
lock.

• HRF15 - The secondary safe must have a push button to emulate the de-
tection of the object presence.

• HRF16 - The secondary safe must have a limit switch to identify if the door
was closed in a simulated way

• HRF17 - The secondary safe must have a push button to emulate the de-
tection of break-in Power System

• HRF18 - The power system must converter the battery volttage to 5V to
power up the Raspberry pi microcontroller with a DC converter module

• HRF19 - The system must have a controller module to control the voltage
of the 19V source to power the 12V battery

2.2.2 Hardware Non-Functional Requirements

• HNRF01 - The control system must use the microcontroller Raspberry pi
3B+

• HNRF02 - The fingerprint recognition must be done using the FPM10A
fingerprint module

Technical Report: Safebox 6

• HNRF03 - The facial recognition must be done using a webcam Logitech
c270

– HNRF03 .1 - The minimum resolution of the camera must be 720p.

• HNRF04 - The keyboard for insert the code by delivery person must be a
numerical keyboard USB

• HNRF05 - The safe system must have a 16x2 LCD Display to show the in-
formation

• HNRF06 - The main safe must have a load cell to detect objects inside the
safe

• HNRF07 - The main safe must have a amplifier HX711 to amplify the load
cell signal

• HNRF08 - The main safe must have a solenoid lock to lock the safe

• HNRF09 - The main must have the accelerometer sensor MPU6050 to de-
tect break-ins

• HNRF10 - The main and secondary safe must have limit switches 5A 250V
to detect if the door is closed

• HNRF11 - The circuits must be mounted in a PCB board

• HNRF12 - The secondary safe must have a white led to simulate the acti-
vation of the solenoid lock

• HNRF13 - The secondary safe must have a push button to simulate the
load cell sensor

• HNRF14 - The primary safe must have a relay to interact with the solenoid
lock

• HNRF15 - The control system must have a relay to activate the sound
alarm

• HNRF16 - The microcontroller Raspberry Pi in the control system must
communicate with microcontroller ESP in the safe system with UART pro-
tocol

• HNRF17 - The power system must use the converter module XI4016

• HNRF18 - The power system must use the controller module Xh-m603

• HNRF19 - The power system must use a 12V battery

• HNRF20 - The power system must use a 19V switched power source

• HNRF21 - The safe sytem must have a microcontroller ESP32 - C3

Technical Report: Safebox 7

2.3 Software Requirements

2.3.1 Software Functional Requirements

Mobile application:

• SRF01- The mobile application must allow the user to register an account

• SRF02 - The mobile application must allow the user to register an order
that the resident user is waiting for delivery

– SRF02.1 - The mobile application must allow the user to choose the
package type

• SRF03 - The mobile application must allow the user to verify the unre-
served/reserved safes and reserve an empty safes

• SRF04 - The mobile application must allow the user to view all his/hers
order requests

• SRF05 - The mobile application must allow the user to delete a order re-
quest

• SRF06 - The mobile application must allow the user to view notifications
of system events, like a package having been delivered or the safe being
broken into

Server application (backend and web application)

• SRF07- The server application must generate the codes to unlock a safe by
delivery person

• SRF08 - The server application must send the code to the mobile applica-
tion

• SRF09 - The server application must allow the admin user to view a dash-
board screen with a list of the safes empty or in use and if each safe is
active or disable for use

• SRF10 - The server application must allow the admin user to view a dash-
board with the audit of system, containing every interaction with the sys-
tem, with action, date-time and user

• SRF11 - The server must generate a report and inform the admin in cases
of no retrieval of the package by the user, to apply a fine

• SRF12 - The server must update the control system with the current keys
to insert on keyboard

• SRF13 - The system must allow a unique admin user per system

Technical Report: Safebox 8

• SRF14 - The control system must send signals periodically to the server
system to inform that is active

• SRF15 - The server must send notification for the users on the mobile ap-
plication, warning that the sever lost the connection with the control sys-
tem

Control system:

• SRF16 - The control system must send the code inserted on keyboard to
server application via Internet

• SRF17 The control system must recognize a person and unlock a vault
with facial recognition, in no more than 12 seconds, for up to 120 different
users.

• SRF18 - The control system must store four face images locally in micro-
controller of control system

• SRF19 - The control system must recognize a person and unlock a vault
with fingerprint recognition, in up to two seconds

• SRF20- The control system must store the fingerprint locally in fingerprint
module of control system, one finger for each user

• SRF21 - The control system must send to safe system what safe needs to
be unlocked/locked

• SRF22 - The control system must allow the resident user register the fin-
gerprint and face to the recognition process

2.3.2 Software Non-Functional Requirements

Mobile application:

• SNRF01 - The mobile application must be developed in Flutter

• SNRF02 - The communication with the server is with HTTP requests

• SNRF03 - The notifications to the users is with pop-up notification

Server:

• SNRF04 - The max number of active reserves is equal to the number of
safes

• SNRF05 - The backend server application must be developed with Node.js

• SNRF06 - The server application must be used the PostgreSQL Database

Technical Report: Safebox 9

• SNRF07 - The server application must be running on Render Cloud

• SNRF08 - The server application must be receive the data from microcon-
troller by HTTP requests

• SNRF09 - The facial recognition application must be developed using python

– SNRF09.1 - The facial recognition application must be developed us-
ing face _recognition API and OpenCV

– SNRF09.2 - The facial recognition application must recognize the
registered users as long as they are facing the camera

– SNRF09.3 - The facial recognition application must recognize the
registered users as long as they are positioned up to 1 meter away
from the camera

• SNRF10 - The server application must be accessed by user admin only

• SNRF11 - The fingerprint recognition application must be developed us-
ing python

– SNRF11.1 - The fingerprint recognition application must use the Rasp-
berry Pi Fingerprint Library

• SNRF12 - The web application must be developed using React

2.4 Anti-requirements

• PAR01 - It will not allow package withdrawal if there is no electrical power
(only via master key).

• PAR02 - Without an Internet connection, it will not be possible to receive
notifications or register new deliveries.

• PAR03 - No more than 120 fingerprints can be stored in the biometric
module.

• PAR04 - Storage limited by the memory capacity available in the micro-
controller.

• PAR05 - It will not be able to detect failures automatically and contact the
admin.

• PAR06 - It will not detect lockpicking attempts very easily if the criminal
do not move the vault one bit.

• PAR07 - If there is no power source (not even UPS), the alarm will have no
way to trigger.

Technical Report: Safebox 10

• PAR08 - The scale will not recognize very light objects (load cell operating
range: 0.2Kg - 20Kg)

• PAR09 - Facial recognition won’t work with people wearing glasses or masks

• PAR10 - Facial recognition won’t recognize people in dark places (it does
not provide a light source to illuminate users during facial recognition)

• PAR11 - Facial recognition won’t recognize a person that is more than 1
meter away from the camera

• PAR12 - It won’t be possible to have more active reservations than the
number of available vaults

• PAR13 - The facial recognition won’t work for a user that doesn’t agree with
the system keeping his photos saved

• PAR14 - The fingerprint recognition won’t work for a user that doesn’t agree
with the system keeping his fingerprint saved

• PAR15 - The condo must provide the monitoring system for the Delivery
Safe Box, as appropriate

• PAR16 - The system’s network configuration is not preconfigured. The ad-
min user needs to configure it by following instructions or by interacting
with support

3 Development

In this section, all the processes done and difficulties faced during the project’s
development will be described, together with the technical details.

3.1 Mechanical design

The Mechanic Droject can be divided into two main subprojects, the Safe part
and the physical control part. Due to practical and budget reasons, it was de-
cided to build only one complete safe for our system, it was also implemented a
secondary mock up safe with features emulated by LEDs and buttons for testing
the modularization. The main vault and the control part were assembled in the
same unit wooden box with 44,5 x 33,5 x 30,5cm dimensions. The back wall was
built in a way that can be removed with a key for easy maintenance. A picture of
the mechanical part of the system is presented in figure 2.

Technical Report: Safebox 11

Figure 2: Mechanical Structure (To the left the main vault, to the right the control
unit)

3.1.1 Control System

The control unit is assembled at the right part of the box. Holes were drilled in
the front to fit the hardware that will be used for users interactions, such as the
numeric keyboard, the webcam, the fingerprint reader and the LCD.

Inside, the PCB boards and microcontrollers are screwed to the walls, the
power system is also there. It was left a free space backside that covers all the
box for cable management.

3.1.2 Primary Safe

Our primary safe was designed to be a secure storage unit installed on the left
side of our wooden box. It features a hinged door at the front side with enough
space to integrate a solenoid lock, providing controlled access to the safe, and
a hidden compartment at the bottom to fit a scale. A limit switch was placed
strategically to get the data if the door is open or closed. Conduits were made
inside the wood for cable routing. An inside view of the safe can be seen in figure
3.

3.1.3 Mock-up Safe

The mock-up serves the purpose of simulating the functionalities of the main
safe, serving as a proof of modularity. It allows for the demonstration and test-
ing of the core features of the safe system in a controlled and practical manner.

Technical Report: Safebox 12

Figure 3: Inside view

It consists of a cardboard box measuring 13.5 x 8.4 x 13.7cm, featuring a rear
opening for cable routing. The design can be seen in figure 4.

3.2 Hardware design

The security and control system for safes consists of three main components:
the control hardware, the safe hardware, and the mockup. The control hard-
ware plays a vital role in managing and controlling the operation of the safes,
as well as handling recognition and order data processing. The safe hardware
is designed to guarantee the protection of stored objects, utilizing features such
as the solenoid lock for locking and unlocking the safe, the limit switch for de-
tecting the door position, and the load cell for detecting the presence of objects
inside the safe. The system also incorporates the mockup, a simulated repre-
sentation of other safes supported by the system. An overview of the hardware
components can be observed in figure 5. The same ESP32C3-Mini microcon-
troller is shared between the control hardware and the safe hardware. Also, the
PCB (Printed Circuit Board) was fabricated on the same board, as depicted in
figure 6.

3.2.1 Control’s Hardware

The control system hardware serves as the central unit, receiving information
from the server regarding deliveries, providing user interaction through the key-
pad and display, and performing facial and biometric recognition processes. It

Technical Report: Safebox 13

Figure 4: Mock-up design

consists of various components to enable these features, such as a Raspberry Pi
3B utilized for processing tasks, acting as the central unit.

To facilitate user interaction, the control system incorporates a numeric key-
pad, allowing users to conveniently interact with the system and input necessary
information. Additionally, an ESP32C3-Mini microcontroller is connected to the
Raspberry Pi via USB to provide a user-friendly interface through a 16x2 LCD uti-
lizing the I2C protocol. For the recognition, the control system integrates a 720p
resolution webcam. This webcam captures images that are utilized in the fa-
cial recognition process, enhancing security measures. Moreover, a fingerprint
module is integrated into the system, connected through a TTL-USB converter.
This module enables secure fingerprint recognition, adding an extra layer of au-
thentication and ensuring authorized access to the system.

A relay is responsible for activating and deactivating the siren, enhancing the
security features of the safe.

3.2.2 Safe’s Hardware

An ESP32C3-Mini microcontroller receives inputs from sensors and send com-
mands to the actuators. A solenoid lock, controlled by a relay, is used to lock and
unlock the safe, a limit switch is employed to detect whether the door is open or
closed. When the door is closed, the limit switch is pressed, and when it is open,
the limit switch is released.

The safe also contains a load cell connected to an HX711 module, consisted
of an amplifier and an analog-to-digital converter, is utilized. This module am-
plifies the load cell signal, enhancing its accuracy and sensitivity. The amplified
signal is then easily interpreted by the microcontroller [1]. It is important to

Technical Report: Safebox 14

Figure 5: High Level Electronic Desing

note that the load cell is not used for measuring weight, but rather to detect the
presence or absence of an object inside the safe.

Additionally, an accelerometer is utilized to measure the acceleration and
the movement of the safe’s structure, detecting potential attempts at tampering
with the structure. The accelerometer chip includes an analog-to-digital con-
verter (ADC) that converts the electrical signals from the sensor into digital sig-
nals. Theses digital signals are then passed through a digital filter to prepare
them for processing [2].

3.2.3 Mock-up’s Hardware

For the mock-up’s hardware components, two push buttons represent the load
cell and the accelerometer, simulating an object presence and the movement,
respectively, when pressed. A limit switch represents the limit switch, however
with reverse operation, for this one, the door is closed when pressed. Further-
more, a LED simulates the unlocking of the solenoid when lit. The final result of
the mock-up board can be seen in figure 7 .

3.2.4 Power Supply Hardware

The power system is powered by a 19V bivolt power supply. In turn, this source
charges a 12V 7Ah lead acid battery that ensures the power supply to the sys-
tem during power outages. To do this safely we lower the voltage of the supply
to 13.8V using a step down converter that feeds a charging controller. This con-
troller starts charging when the battery reaches 13.4V and charges the battery
until it reaches 13.8V. The battery powers the alarm siren and the safe locks us-

Technical Report: Safebox 15

Figure 6: Control and Safe PCB Board

ing relays. To power all the other components we step down the battery voltage
to 5V with another step down converter.

3.3 Software design

To have a better understanding of the software design of all parts of the sys-
tem, in the footlink below there are numerous diagrams illustrating use cases,
flowcharts, and some behaviors about the software system.1

3.3.1 Mobile application

The mobile application, which was developed in Flutter [3], has the intention
of doing the vault reservations and the creation of orders to receive a code, in
which such code is used at the time of delivery by the delivery person, besides
this, there are other important features that will all be described below.

Initially, the application has the registration step and after the registration,
the resident user can successfully login only if the admin user has authorized
him to use the system (the authorization occurs in a web application accessed

1Software diagrams: https://frankbloemer.notion.site/Deliverable-4-Software-design-
43ec9cbe575c4fe7a750322a1b1daa3e

https://frankbloemer.notion.site/Deliverable-4-Software-design-43ec9cbe575c4fe7a750322a1b1daa3e
https://frankbloemer.notion.site/Deliverable-4-Software-design-43ec9cbe575c4fe7a750322a1b1daa3e

Technical Report: Safebox 16

Figure 7: Mock-up Board

only by the admin). After authorization and when the user log in to the system,
figure 8 contains the summary flowchart about using the application.

Figure 8: Mobile application flowchart diagram

Technical Report: Safebox 17

By checking the figure, the user can, through the profile page, request the
code that will be used to register the fingerprint and face in the system for the
recognition process of both, besides updating registration data.

Furthermore, there is use with the screens referring to the core of the project,
for reserving the vault and creating an order. First of all, it is necessary for the
resident user to check the estimated delivery time, but not yet finalize the pur-
chase of the product, because when reserving the safe, it is necessary to inform
the reservation period and being aware of the date, he can start the safe’s reser-
vation step.

When you access the booking screen, all the vaults in the condominium will
be listed, informing the status of each safe. The user can select the empty vaults
to reserve one of them. After a successful reservation, the user can create an or-
der, linked to the same reservation and after the reservation, the user will receive
the delivery code in the application. Thus, the delivery code is the information
that the resident user must enter in the address complement and the same code
will be used by the deliveryman during the delivery. This code will be linked the
delivery with the order and the specific user. Finally, there will also be a screen
to check the orders on hold and completed. Application screens are shown in
the figures 9 , 10 , 11 , 12 , 13 and 14.

Figure 9: Login Screen Figure 10: Sign Up Screen Figure 11: Main Screen

Technical Report: Safebox 18

Figure 12: Profile Screen Figure 13: Book a Safe
Screen

Figure 14: Safes Screen

3.3.2 Web application

The web application, which was developed with React [4], it’s for management
purposes, and can only be accessed by administrator users. Through the appli-
cation, it will be possible to check the existing users in the system, as well as
authorize them to use the mobile application.

Moreover, it will be possible to access the vault dashboard screen, which
contains information about the vaults in the condominium, for example whether
the vault is active and occupied.

Furthermore, there is the audit page, in which the admin user can check all
the actions performed in the system, by which user and when this action was
performed, for the purpose of control, security and management of the system.

Finally, the page for the generation of fine reports, which generates a PDF file
containing the users who have used the safe for longer than the reserved time
and the amount that each one should pay (in which the charge will be inserted
in the condominium). Figure 15 shows the summarized flowchart of the web
application. Finally, the web application is hosted in Render cloud server [5].

3.3.3 Backend application

The backend application, developed in Node.js [6] is running in a cloud server
called Render [5] together with the PostgreSQL 12 database [7]. The application
has the purpose of integrate each control system with the mobile application

Technical Report: Safebox 19

Figure 15: Web application flowchart diagram

and with the web application. So, the backend software manages all the users
of the system, receives the requests to book a safe and create an order from the
mobile application, generate the codes to the delivery, the registration face and
fingerprint process and send these codes to both mobile application and control
system.

In addition, the server receives from control system information like the
package of the specific resident user was deliveried or withdraw or that a vault
is being damaged, and send to the required users a push notification to mobile
application using Firebase Cloud Messaging (FCM) [8].

3.3.4 Communication between the softwares

The communication between the mobile application and backend application
and between the control system and backend application are executed using
HTTP requests with JWT token to the authetication process and all the end-
points are in the Node.js system.

Moreover, the communication between the control system (Raspberry Pi mi-
crocontroller) and safe system (ESP C3 microcontroller) is with UART (universal
asynchronous receiver/transmitter) with a simplified implementation of HDLC
(High-Level Data Link Control). The Raspberry requests the activation or read-
ing of the peripherals and ESP32 sends a message to Raspberry when the alarm
is triggered.

Technical Report: Safebox 20

3.3.5 Recognition process

In the project, two methods for recognizing a resident user were addressed, which
are through face and through fingerprint. For both methods, code was used that
was created using Python and is running on the Raspberry Pi.

3.3.6 Facial recognition

For face recognition, both the openCV [9] library and the face_recognition api
[10] were used, figure 16 contains a summary of the flow of how the face recog-
nition process occurs.

Figure 16: Face recognition flowchart diagram

Therefore, as can be seen in figure 16, a frame is first taken and face detection
is performed, in order to optimize face recognition with only faces present.

Subsequently, a 128-d vector is computed, which represents the gradient of
the image that shows from the flow of the lightest to the darkest pixels, thus
representing the encoding of the person’s face.

As there is the process of registering the user’s face in the system, in addition
to the photo that is stored locally on the Raspberry Pi, the 128-d vector is also
stored. Thus, by comparing the 128-d vectors the software is able to recognize a
person’s face during the face recognition process.

At the time of face recognition the 128-d vector of the current person is com-
puted and compared with all 128-d vectors already stored.

The fingerprint recognition process is a similar process, in which the finger-
print recognition module stores the photo, also creating a structure to represent
the fingerprint, performing the comparisons by the structure created and stored
in the module itself. In the development of the fingerprint software the Adafruit
lib was used[11].

Technical Report: Safebox 21

Table 1: Project budget
Product Qtd. Total price

Leac Acid Battery 12V 1 R$70,00
Microcontroller Raspberry pi 3B+ 1 R$450,00

Microcontroller ESP32-c3-mini 2 R$30,00
USB Numeric keyboard 1 R$34,99

Display LCD 16x2 1 R$15,68
Webcam Logitech c270 1 R$130,00

Fingerprint module FPM10A 1 R$52,30
Sound alarm 12V 1 R$23,42

Accelerometer and gyroscope MPU-6050 Gy-521 1 R$14,98
Load cell 3 wires - 50Kg 1 R$9,50

Solenoid lock Morelle GM2 12V 1 R$60,00
Wood safe 1 R$200,00

Miscellaneous * R$280,37,00
Total * R$1371,24,00

4 Results

4.1 Budget

Table 1 contains the list of materials used to build the safebox. Initially, the bud-
get foreseen in the project overview was R$ 1072,74, however, R$ 1271,24 were
spent, thus, an increase of 18% in the foreseen budget. However, the project
contains 100 reais for additional components for risks.

Miscellaneous contains electronic materials for the battery system, as well
as materials for making the system’s primary safebox and the control system.

4.2 Schedule

The development time for the project was 7 weeks and more two weeks to the
final report. Table 2 shows an overview of the entire schedule, noting that to-
tal hours contains some tasks that were added during the development. The
estimated hours include the 30% extra hours and was determinated during the
project planning. Thus, there was a 30% increase in hours when comparing the
quantity worked with the estimated quantity (considering the 30% margin of er-
ror). The full sheet can be viewed in the footlink below. 2

2Schedule: https://frankbloemer.notion.site/13b92bbf4f584d00b24cc657eee877b9?v=7bfa4623ad6a4aebb9af70805a932d97

https://frankbloemer.notion.site/13b92bbf4f584d00b24cc657eee877b9?v=7bfa4623ad6a4aebb9af70805a932d97

Technical Report: Safebox 22

Table 2: Project schedule.
Week Estimated hours Worked hours

Week 2 - Blog 40 70
Week 3 - Mechanical 65,5 95,7
Week 4 - Hardware 52 93,5
Week 5 - Software 64 58

Week 6 - Integration I 40,5 55
Week 7 - Integration II 60,5 120

Week 8 - Final integration 72,5 118
Week 9 - Final Report - Part I 35 35

Week 10 - Final Report - Presentation 25 25
Total estimated hours 455 670,2

Total estimated hours + 30% error 516,75

5 Conclusions

With the development of this project, it was possible to obtain several inter-
esting conclusions and learnings. To begin with, developing extensive projects
in teams always involves technical and interpersonal challenges. Conflicts of
schedule, time, and friction are inevitable. In these moments, the importance
of good, flexible, and realistic planning becomes even more evident. In addi-
tion, clear, honest communication and good leadership are essential to keep
the team united and in harmony, focused on the objectives and completing the
project with the planned quality, time, and budget.

In addition, the help and cooperation among the members further reinforces
the synergy and learning for a successful project. In several moments, it was pos-
sible to experience difficulties due to lack of knowledge, experience, or unfore-
seen events in the development of the project. A good action plan and well-done
risk assessment were essential to have backup plans, as well as to save time and
not lock the development with unplanned blocks.

In the case of the Safe Delivery Box project, the development proved to be
much more complex than initially foreseen. In the planning phase, much less
time was estimated to accomplish the tasks than what was actually given, mainly
due to lack of knowledge and unforeseen blocks. Given this, the final result of
time spent was much longer than planned. However, the budget estimate was
very coherent, and was not extrapolated by a large margin.

Unforeseen problems and blockages occurred mainly in the integration phase
as previously planned, with time allotted for bug fixing and final adjustments.
The assembly of the mechanical structure occurred in the first weeks, proving
to be a challenge for students in a course where there is not such a strong focus
on mechanics. The hardware and software development also had its challenges,
but it was possible to keep up the pace without major delays during the course’s

Technical Report: Safebox 23

deliveries and partial weekly presentations.
Finally, it was possible to deliver the project as initially planned, with many

learnings, hits and misses along the way. We leave the course with much more
hands-on knowledge than when we started at the beginning of the semester, and
with the certainty that the project developed here presents interesting perspec-
tives for future projects, in an increasingly digital and asynchronous world.

References

[1] Medição de força com o Arduino e um módulo HX711. https:
//www.aranacorp.com/pt/medicao-de-forca-com-o-arduino-e-
um-modulo-hx711/#:~:text=PrincÃŋpio%20de%20funcionamento,
Ãľ%20aplicada%20num%20sinal%20analÃşgico.

[2] Acelerômetro: como funciona e como usar? https://www.
electricalelibrary.com/2022/04/29/acelerometro-como-
funciona-e-como-usar/.

[3] Flutter documentation. https://docs.flutter.dev/.

[4] React documentation. https://legacy.reactjs.org/docs/getting-
started.html.

[5] Render Cloud Application Hosting for Developers. https://render.com/.

[6] Node documentation. https://nodejs.org/en/docs.

[7] PostgreSQL Documentation. https://www.postgresql.org/docs/.

[8] Configurar um app cliente do Firebase Cloud Messaging no Android.
https://firebase.google.com/docs/cloud-messaging/flutter/
client?hl=pt-br.

[9] OpenCV-Python Tutorials. https://docs.opencv.org/3.4/d6/d00/
tutorial_py_root.html.

[10] Raspberry Pi Face Recognition. https://pyimagesearch.com/2018/06/
25/raspberry-pi-face-recognition/.

[11] Adafruit-Fingerprint-Sensor-Library. https://github.com/adafruit/
Adafruit-Fingerprint-Sensor-Library.

https://www.aranacorp.com/pt/medicao-de-forca-com-o-arduino-e-um-modulo-hx711/#:~:text=Princípio%20de%20funcionamento,é%20aplicada%20num%20sinal%20analógico
https://www.aranacorp.com/pt/medicao-de-forca-com-o-arduino-e-um-modulo-hx711/#:~:text=Princípio%20de%20funcionamento,é%20aplicada%20num%20sinal%20analógico
https://www.aranacorp.com/pt/medicao-de-forca-com-o-arduino-e-um-modulo-hx711/#:~:text=Princípio%20de%20funcionamento,é%20aplicada%20num%20sinal%20analógico
https://www.aranacorp.com/pt/medicao-de-forca-com-o-arduino-e-um-modulo-hx711/#:~:text=Princípio%20de%20funcionamento,é%20aplicada%20num%20sinal%20analógico
https://www.electricalelibrary.com/2022/04/29/acelerometro-como-funciona-e-como-usar/
https://www.electricalelibrary.com/2022/04/29/acelerometro-como-funciona-e-como-usar/
https://www.electricalelibrary.com/2022/04/29/acelerometro-como-funciona-e-como-usar/
https://docs.flutter.dev/
https://legacy.reactjs.org/docs/getting-started.html
https://legacy.reactjs.org/docs/getting-started.html
https://render.com/
https://nodejs.org/en/docs
https://www.postgresql.org/docs/
https://firebase.google.com/docs/cloud-messaging/flutter/client?hl=pt-br
https://firebase.google.com/docs/cloud-messaging/flutter/client?hl=pt-br
https://docs.opencv.org/3.4/d6/d00/tutorial_py_root.html
https://docs.opencv.org/3.4/d6/d00/tutorial_py_root.html
https://pyimagesearch.com/2018/06/25/raspberry-pi-face-recognition/
https://pyimagesearch.com/2018/06/25/raspberry-pi-face-recognition/
https://github.com/adafruit/Adafruit-Fingerprint-Sensor-Library
https://github.com/adafruit/Adafruit-Fingerprint-Sensor-Library

	Introduction
	Project Specification
	Mechanical Requirements
	Mechanical Functional Requirements
	Mechanical Non-Functional Requirements

	Hardware Requirements
	Hardware Functional Requirements
	Hardware Non-Functional Requirements

	Software Requirements
	Software Functional Requirements
	Software Non-Functional Requirements

	Anti-requirements

	Development
	Mechanical design
	Control System
	Primary Safe
	Mock-up Safe

	Hardware design
	Control's Hardware
	Safe's Hardware
	Mock-up's Hardware
	Power Supply Hardware

	Software design
	Mobile application
	Web application
	Backend application
	Communication between the softwares
	Recognition process
	Facial recognition

	Results
	Budget
	Schedule

	Conclusions

