
Federal University of Technology - Paraná – UTFPR

Academic Department of Electronics – DAELN

Academic Department of Informatics – DAINF

Computer Engineering
Integration Workshop 3 (ELEX22) – S71 – 2025/1

Technical Report
SMAT: Stop Motion Animation Table

Daniel Augusto Pires de Castro– danielcastro@alunos.utfpr.edu.br

Guilherme Correa Koller– koller@alunos.utfpr.edu.br

Mateus Filipe de Ornelas Rampim– mateusrampim@alunos.utfpr.edu.br

Pedro Henrique Fracaro Kiche– pedrokiche@alunos.utfpr.edu.br

Thaís Say de Carvalho– thaiscarvalho@alunos.utfpr.edu.br

Victor Gabriel Almeida e Almeida– victoralmeida@alunos.utfpr.edu.br

June 2025

Abstract

The SMAT (Stop Motion Automation Table) project is an automated sys-
tem designed to assist and optimize the stop-motion animation process.
This paper presents the development of SMAT, covering its mechanical de-
sign, electronic implementation, and software architecture. The mechani-
cal system features an XY table for precise puppet positioning and a servo-
driven articulation mechanism. The electronic design includes power dis-
tribution, motor drivers for stepper and servo motors, and a Raspberry Pi
as the central control unit, communicating with a remote PC-based ap-
plication via a dedicated network connection. The software component
consists of embedded control scripts running on the Raspberry Pi and a
graphical user interface (GUI) developed for the PC, allowing animators
to configure movements, trigger frame captures, and preview animations
in real time. Additionally, the system integrates computer vision algo-
rithms for hand detection and background removal, streamlining the post-
production process. The final output includes an automated MP4 export
of the captured animation sequence. The SMAT project offers a practical
and efficient solution for animators, reducing manual workload and in-
creasing the precision and speed of stop-motion productions.

1 Introduction

Stop Motion is an animation technique in which objects and characters are moved
and their positions are captured frame by frame by a camera. By placing the
frames in sequence, an illusion of movement is produced in the video render-
ing to animate these objects. The process is usually slow and time-consuming,
even when using modern tools such as 3D printed object models or green screen
backdrops for chroma key removal. Therefore, both production and post-production

1

Technical Report: SMAT - Stop Motion Animation Table 2

require significant control and precision from the animators to obtain the de-
sired results. This can harm the creative process of animators, as the time they
could use to create their stories is consumed by developing these technical is-
sues, especially with tight deadlines in the animation industry.

1.1 Proposed solution overview

The problem is solved by the SMAT: Stop Motion Animation Table, which is pre-
sented by the Figure 1. The project allows an animator to use an editing tool to
determine movement instructions for their animation puppet. The movements
are made automatically by the motors of the table and the puppet, and are then
captured by a smart camera that detects whether the user intends to intervene
or not. The animation is then processed according to all the user commands
and can be edited to generate a final video.

Figure 1: SMAT overall solution. Source: Authors (2025)

Initially, the user must use an application developed by the Python qtGUI
library, generating sequences of movements through command blocks imple-
mented in blockly. These instructions are then sent to the Raspberry Pi mi-
crocontroller and a TCP/IP communication is automatically established to send
images produced by the robot’s movement. Throughout the process, the cam-
era detects if there is external movement, caused by hands or any object that
appears on the edge of the image. If this occurs, the sequence of movements
is paused and resumed only when there is no more intrusion detected by the
camera. Finally, the animator exports the video and edits it according to his/her
convenience.

The movement is done by means of an XY table of stepper motors connected
to the microcontroller, together with the servomotors of the robot’s joints. Their

Technical Report: SMAT - Stop Motion Animation Table 3

positions are calibrated to respect the user’s commands so that the camera cap-
tures movements that are consistent with the illusion of continuity. The XY table
uses aluminum bars and contains a mechanical arm, all hidden by green screens
to produce the removal of the background. The filaments pass through this me-
chanical arm and allow the robot to rotate without causing breakage. The robot
is humanoid, is 23 cm tall and was 3D printed, allowing the animator freedom
to customize it according to their design interests.

Technical Report: SMAT - Stop Motion Animation Table 4

2 Project Specification

The project was based on a total of 92 requirements, corresponding to the im-
portant functionalities for implementing SMAT. They were necessary to describe
the development stages, divided into Hardware, Mechanical and Software (of
the application and the embedded system), among them functional and non-
functional. In table Table 1 you can see the main requirements, for a general
understanding of the system. In the project blog, available online at the Notion
URL, you can check all the requirements, even those chosen as optional. In ad-
dition, it was necessary to integrate the requirements using a scheduler to link
them to tasks throughout the weeks of deliverables.

Req. Description
FR07 The application must let the user define robot movements by instructions.
FR10 The application must send to the microcontroller the instruction of the moviment.
FR11 The application must get the images from the microcontroller.
FR13 The application must set the time of the images merged display according to the frame

rate instructed by the user.
FR14 The application must show the resulting video of the instruction.
FR05 The application must allow using a custom image as background.
FR25 The microcontroller must pause movements when a hand is detected.
FR28 The microcontroller must capture a picture from the camera once the movement to

the frame is completed.
FR35 The hardware must include a power supply capable of powering all motors and con-

trollers safely.
FR42 The XY table must be connected to the puppet by its head.
FR48 The system must include a table board for support the puppet and the XY table.
NFR84 The hand detection must be made by detecting the edges of the picture, so when a

hand or other objects (clamp, pincers) appears from the edges, the video will be stop.
NFR54 The puppet must be made of 3D filament.
NFR58 The system must have 2 Stepper motors (NEMA 17 or equivalent) for X and Y axis

control.
NFR59 The system must have 6 SG90 micro servos for puppet articulation (arms, legs, neck,

rotation).

Table 1: Main project requirements. Source: Authors (2025). | FR-Functional
Requirement | NFR-Non Functional Requirement Requirement

SMAT was limited to the fact that the animator could only use one movable
puppet in the scene, allowing the robot to interact with other objects by simply
placing and moving them during recording. For this reason, the features for de-
tecting intrusions in the scene and removing the green screen were essential, as
they allow customizations to the scene desired by the animator. The possibil-
ities for specifying the frame rate follow conventional animation standards —
between 10 and 24 FPS, and the entire process is automated to convert it into
a frame of movement. However, the interface did not have all the conventional
video editing tools, such as video viewing timelines and frame manipulation.
Even so, the project has the essential basic features to make unlimited anima-

Technical Report: SMAT - Stop Motion Animation Table 5

tion scenarios possible for the user to create.

3 Development

The project was developed in parts, divided into Mechanics, Electronics and
Software. For each of these parts, there was a preliminary design in order to
plan the necessary measures for implementing SMAT. For this reason, as one
part was produced, the next part of the project was designed, until reaching the
final integration of everything.

3.1 Mechanical Structure

3.1.1 Puppet

The puppet was initially designed to have a humanoid body with holes to sup-
port the servomotors in its arms and legs. On top of it, there is a coupling to
connect it to the mechanical arm of the XY table, which contains another mo-
tor to rotate the robot around its own axis. There was a previous intention to
allow movement of the robot’s neck, but this requirement was made optional
and was not implemented due to the difficulty with coupling its axis. All of this
was designed to allow the most basic possible movements integrated with the
electronic components.

To design the puppet, it was necessary to use Fusion 360 [1], a 3D model-
ing software that has useful features for mechanical projects. In the Figure 2
you can see the puppet design. The arms are tilted to give the impression of
walking, since this is the basic movement it can make. Furthermore, it was not
necessary to care for the robot to be balanced while standing, since it is naturally
suspended, being held by the mechanical arm of the table. In the end, the pup-
pet was 3D printed using PETG filament. In the Figure 3 it’s possible to check the
result of the 3D printing of the puppet.

Technical Report: SMAT - Stop Motion Animation Table 6

Figure 2: Puppet Drawing. Source: Authors (2025)

Figure 3: Printed Robot. Source: Authors (2025)

3.1.2 XY Table

Fusion 360 software was also used to model the XY table, as seen in the drawing
of the Figure 4, which includes the aluminum bars and the arrangement of the
entire rail system with skates and balls (known as linear guides) to allow move-
ment with high precision and low backlash. This support integrates with the

Technical Report: SMAT - Stop Motion Animation Table 7

robot through the coupling and has the built-in electronics to capture the com-
mands from the microcontroller.

Figure 4: XY Table Drawing. Source: Authors (2025)

A MDF board with the dimentions 45cmX65cm supports all of the aluminium
rails and includes a space for the support of the microcontroller and the circuit.
It can be verified in Figure 5. The XY table has a coupling for conecting the axis
rotation motor for the puppet, as described in Figure 6.

Technical Report: SMAT - Stop Motion Animation Table 8

Figure 5: XY Table Assembly. Source: Authors (2025)

Figure 6: XY Table Coupling. Source: Authors (2025)

3.2 Electronical

All the circuit is inside a black patola box, as described in Figure 7.

Technical Report: SMAT - Stop Motion Animation Table 9

Figure 7: Patola Box for the Circuit. Source: Authors (2025)

3.2.1 Main Connection Board

The first hardware component designed was the main connection board, whose
schematic is presented in Figure 8. This module acts as the central interface
between the Raspberry Pi controller [2] and the system’s peripherals. It groups
the necessary GPIO signals for the stepper motor control, exposes the I²C com-
munication bus for the servo motor module, and provides connection points
for other critical sensors. Specifically, the end-stop sensors for the XY table are
connected directly to GPIO 13 and GPIO 19, allowing the system to detect the
physical limits of the axes. Additionally, the board manages the power distri-
bution to the different components of the project, facilitating the assembly and
ensuring a robust connection between the modules.

Technical Report: SMAT - Stop Motion Animation Table 10

Figure 8: Electrical schematic of the main connection board. Source: Authors
(2025)

3.2.2 Stepper Motor Control Module

The stepper motor control module, detailed in the schematic of Figure 9, is re-
sponsible for driving the two bipolar NEMA 17 motors that move the table on
the X and Y axes. The circuit uses two A4988 drivers [3], which receive the step
(STEP) and direction (DIR) signals from the Raspberry Pi and convert them into
the necessary current to move the motors with high precision. To ensure stable
operation and suppress voltage spikes from the motors, each driver’s power in-
put is supported by a 100µF electrolytic decoupling capacitor. This setup allows
for the exact positioning of the platform in each frame of the animation.

Figure 9: Electrical schematic of the stepper motor control module. Source: Au-
thors (2025)

Technical Report: SMAT - Stop Motion Animation Table 11

3.2.3 Servo Motor Control Module

For the control of the puppet’s multiple articulations, a servo motor control
module was designed, as presented in Figure 10. This circuit is based on the
PCA9685 driver, a 16-channel PWM controller that communicates with the Rasp-
berry Pi via the I²C bus. This approach is highly efficient, as it allows controlling
up to 16 servo motors using only two GPIO pins from the microcontroller (SDA
and SCL). The PCA9685 autonomously generates the stable and precise PWM
signals required for the positioning of each joint, freeing up the Raspberry Pi for
other tasks.

Figure 10: Electrical schematic of the servo motor control module. Source: Au-
thors (2025)

3.2.4 Power Supply

The system’s power supply strategy was designed to ensure stable and safe oper-
ation for all electronic components. As indicated on the main board (Figure 8),
the system is powered by external voltage sources and uses two distinct power
lines:

• 12V Supply: Intended exclusively for the stepper motor drivers (A4988).
This higher voltage is necessary to ensure adequate torque and perfor-
mance from the stepper motors during the movement of the XY table.

• 5V Supply: Responsible for powering the Raspberry Pi microcontroller,
the PCA9685 servo controller, and the servo motors themselves.

This separation ensures that the microcontroller and the more sensitive con-
trol circuits receive a regulated and stable voltage, without being affected by
the electrical noise and voltage drops that can be generated by the high-current
switching of the stepper motors.

Technical Report: SMAT - Stop Motion Animation Table 12

3.2.5 Peripherals and Utilities

The complete hardware design for SMAT integrates key off-the-shelf peripherals
and utilities to fulfill its operational requirements in a modular fashion. These
components are connected to the main Raspberry Pi controller to perform tasks
ranging from precise motor control to image capture. The main peripherals are:

• [1x] USB Webcam/Phone Cam: Connected directly to the Raspberry Pi’s
CSI interface, this module acts as the system’s "eye." It serves the dual pur-
pose of capturing high-resolution frames for the animation and providing
the video feed for the software’s intrusion detection feature.

• [2x] Stepper Motor Driver (A3967): Each of the two NEMA 17 motors of
the XY table is controlled by a dedicated driver [4]. These modules inter-
pret the low-voltage logic signals from the Raspberry Pi and convert them
into the high-current power required for the precise, step-by-step move-
ment of the motors.

• [1x] 16-Channel Servo Driver Board (e.g., PCA9685): To control the six
SG90 servo motors of the puppet’s joints without overwhelming the Rasp-
berry Pi’s GPIO pins, an I²C servo driver board is used. This utility offloads
the signal generation task, providing stable and precise control over all
puppet articulations.

• [1x] Power Supply Unit (PSU): A dedicated power supply is a critical utility
to ensure stable and safe operation. It is sized to provide sufficient and
reliable power to the Raspberry Pi, the high-torque stepper motors, the
servo motors, and all other electronic components simultaneously.

Considering all that was presented in this section, the final internal hardware
assembly of the SMAT project is represented in the Figure 11.

Figure 11: SMAT internal hardware assembly diagram. Source: Authors (2025)

3.3 Software

The software component of SMAT is the bridge between the animator’s creative
intent and the physical execution by the hardware. It is architecturally divided

Technical Report: SMAT - Stop Motion Animation Table 13

into two distinct but interconnected parts: the embedded software running on
the Raspberry Pi controller and the user interface application running on the
animator’s computer. These two components communicate over a TCP/IP net-
work, creating a responsive and powerful system for creating animations. This
section will present each of these parts in detail.

3.3.1 Embedded Software

For a better visualization of the software architecture, Figure 12 shows the de-
signed class diagram for the embedded system.

Figure 12: Embedded software class diagram. Source: Authors (2025)

As seen in Figure 12, the SMAT embedded software is structured around a
central handler and a set of supporting classes responsible for motor control,
command loading, invasion detection, and server interaction.

The CommandHandler is the main module of the system. When the server
receives a new ‘comandos.json‘ file, this component is triggered. It loads and ex-
ecutes each command sequentially, captures images from the webcam, verifies
for intrusions, and sends the validated frames back to the desktop interface.

There are several supporting classes that provide the core functionality:

• MotorController: This class handles all movement-related tasks. It in-
stantiates and controls both stepper motors (X and Y axes) and servos (for

Technical Report: SMAT - Stop Motion Animation Table 14

limb movements). It provides methods to execute full command instruc-
tions and low-level motor operations.

• StepperMotor: Represents a stepper motor, storing configuration param-
eters such as pin assignments and providing methods like homing() and
move_to() to move to specific positions.

• CommandLoader: Loads animation instructions from a JSON file and
stores them in a queue. Commands can be fetched one by one using
get_next_command(), and is_empty() is used to determine if all com-
mands have been processed.

• InvasionDetector: Compares each new image captured from the webcam
with a reference image to check for unwanted movement at the frame bor-
ders. It was inspired by other project which uses AI for hand detection [5].
However, SMAT uses edge detection and dilation to detect any significant
changes and prevent capturing intruded frames.

• Server: A Flask-based web server responsible for receiving the ‘coman-
dos.json‘ file from the desktop application. Upon receiving a file, it saves
it locally and triggers the execution process through the CommandHandler.

This architecture ensures modularity and maintainability, allowing each part
of the system to be tested independently while coordinating seamlessly during
the animation playback process.

3.3.2 User Interface Application

The SMAT user interface is a desktop application developed with Python and
a Qt-based GUI library. It provides all the necessary tools for an animator to
create, preview, and export a stop motion animation. Figure 13 illustrates the
main classes of the application.

Figure 13: SMAT Application Class Diagram. Source: Authors (2025)

Technical Report: SMAT - Stop Motion Animation Table 15

The application communicates with the SMAT table via a TCP/IP connec-
tion, sending animation instructions and receiving captured frames. This is
done by creating Flask servers and clients within the application and the Rasp-
berry Pi. The python library requests is responsable for making the request. The
primary data sent is the entire animation sequence, structured as a JSON array.
Each object in the array represents a single frame and contains the absolute tar-
get position for each of the 7 motors.

The animation sequence is a list of frame objects. The example below shows
two frames from a sequence where only the Y-axis is moving.

Technical Report: SMAT - Stop Motion Animation Table 16

[
{

"BDireito": 0, // Servo position for Right Arm
"BEsquerdo": 0, // Servo position for Left Arm
"OwnAxis": 0, // Servo position for Puppet Own Axis
"PDireito": 0, // Servo position for Right Leg
"PEsquerdo": 0, // Servo position for Left Leg
"X": 0, // Stepper position for X axis
"Y": 0 // Stepper position for Y axis

},
{

"BDireito": 0,
"BEsquerdo": 0,
"OwnAxis": 0,
"PDireito": 0,
"PEsquerdo": 0,
"X": 0,
"Y": 5.555555

}
]

The application receives status messages and image data, so the user is able
to receive feedback on how the process is going. When an error occurs, a popup
appears to indicate what happened. The updates are done by simple JSON mes-
sages indicating progress. When a picture of each frame is catched, the Pi sends
it to the application. A folder containing temporary frames is filled with the new
ones and the User is able to export it, so the "frame_captured" status is shown.

The application is built around a single main window that consolidates all
tools needed for the animation workflow. The interface, shown in its entirety in
Figure 14, is divided into three main functional areas.

Technical Report: SMAT - Stop Motion Animation Table 17

Figure 14: The main graphical user interface of the SMAT application, showing
the Blockly workspace (left), the Control Panel with JSON preview and video op-
tions (right), and the main action bar (bottom). Source: Autors (2025)

The largest area of the interface is the visual programming workspace, la-
beled "Movements" and implemented with Blockly [6]. The animator defines
motion segments using "Movement" blocks, as exemplified in Figure 15. Within
these blocks, the user sets start and end keyframes by entering the numerical
target positions for the XY table and each puppet servo into the nested "Robot"
position blocks. The user also sets the FPS and duration parameters that the
software will use for the interpolation calculation. Below this workspace, but-
tons for "Save Blocks", "Load Blocks", and "Clean Blocks" provide project man-
agement capabilities.

Technical Report: SMAT - Stop Motion Animation Table 18

Figure 15: Example of the main ’Movement’ instruction block. The user defines
the start and end poses (keyframes) by entering numerical values directly into
the nested ’Robot’ position blocks. Source: Autors (2025)

In the right of the interface, there is the Control Panel, that provides real-time
information, process monitoring, and output controls. It is subdivided into:

• JSON Generated by Blocks: A text area that displays the machine-readable
JSON array generated from the visual blocks. This allows the user to verify
the interpolated frames before sending them to the robot. This area can
be edited by the User.

• Status: A display field that shows feedback and status messages received
from the SMAT table during operation (e.g., "frame_captured", "paused").

• Robot Video: A set of functions for video post-production. This includes
the "Export Video MP4" button to create the final animation file, a "Merge
with the previous Video" button to stitch multiple animation segments to-
gether, and "Delete Last Video". For video editing, the main python library
used was OpenCV [7].

In the Right Bottom of the interface, there is the Action Bar, which is a row of
primary action buttons that drive the main workflow.

• Convert Blocks: Generates the sequence of interpolated frames from the
keyframes defined in the workspace and displays them in the JSON pre-
view area.

Technical Report: SMAT - Stop Motion Animation Table 19

• Send to the robot: Transmits the generated JSON sequence to the SMAT
table to begin the automated capture process.

• Add Background: Allows the user to select a custom background image
for the scene. It was based on a chroma key algorithm [8] applied as seen
in Figure 16.

• Helper Manual: Includes a ’?’ button, to ensure for the User the main
instructions of uusing the Application.

Figure 16: Background Removal. Source: Authors (2025).

4 Results

4.1 Budget

The total estimated budget for the SMAT project was structured to include both
the core components and a contingency fund for risk mitigation. The primary
components required for the initial assembly amounted to R$ 1035.00. An ad-
ditional R$330.00 was allocated for spare parts and unexpected events, such as
replacing components or needing a second 3D printing run. This brought the
total planned budget to R$ 1365.00, as detailed in Table 2.

Technical Report: SMAT - Stop Motion Animation Table 20

Table 2: Project Budget

Item Project Relation Cost (R$)
Raspberry Pi 3B+ Original Estimation 250.00
USB Camera Original Estimation 60.00
Micro servo MG90S (360 degrees) Original Estimation 35.00
Micro Servo SG90 (5 units) Original Estimation 50.00
3D printed Robot Original Estimation 50.00
Servo Driver PCA9685 Original Estimation 25.00
NEMA 17 Stepper Motor (2 units) Original Estimation 120.00
Stepper Driver A3967(2 units) Original Estimation 20.00
12V 20A Source Original Estimation 30.00
Step-down converter Original Estimation 10.00
Aluminum Rails Original Estimation 200.00
MDF Wood Original Estimation 30.00
Belts and Pulleys (2 units) Original Estimation 100.00
Endstop Switches (2 units) Original Estimation 20.00
Cables and Connectors Original Estimation 30.00
On/Off Switch Original Estimation 5.00
Spare SG90 servos (3 units) Risk Mitigation 30.00
Spare budget for second printing Risk Mitigation 50.00
12V 20A Source (spare) Risk Mitigation 30.00
NEMA 17 Stepper Motor (spare, 2 units) Risk Mitigation 120.00
Extra budget for unexpected events Risk Mitigation 100.00
Total 1365.00

4.2 Schedule

The project’s timeline was organized into six distinct stages: initial development
of the Mechanical, Hardware, and Software sections, followed by integration
phases. The allocation of hours and the time spent on each stage are detailed
in Table 3.

The data shows that the project was executed efficiently through the initial
development and integration stages, with most phases being completed under
the estimated time. However, during the final period leading up to the presen-
tation, unforeseen and complex integration problems emerged. Solving these
last-minute issues to ensure a stable and fully functional final product required
a significant troubleshooting effort. This is reflected in the 350 hours spent in
the final stage, far exceeding its estimate and causing the total project time to
slightly surpass the initial plan.

Technical Report: SMAT - Stop Motion Animation Table 21

Name Estimated time (h) Spent time (h)
Mechanical Section 145 125
Hardware Section 128 88
Software Section 122 95.5
Integration 135 134.5
Final Integration 164 136
Presentation 234 350
Total 928 929

Table 3: Project Schedule by Stage

Figure 17 illustrates the functional requirements achieved, categorized into
mandatory done, mandatory partially done, optional done and optional not
done. The uncompleted optional requirements includes only aesthetic features
to enhance the design, such as moving the doll’s neck and signaling LEDs. The
partially completed feature was the puppet’s rotation around its own axis, which
does not complete the 360º turn.

Figure 17: Functional Requirements Achieved. Source: Authors (2025)

5 Conclusions

The SMAT project has been a challenging and rewarding endeavor, representing
nearly 1000 hours of design, development, and testing across mechanical, elec-
tronics, and software disciplines. It has successfully demonstrated its feasibility

Technical Report: SMAT - Stop Motion Animation Table 22

as an effective proof of concept for an automated stop motion animation table.
The results highlight its ability to reduce manual effort, streamline the anima-
tion process, and expand the creative possibilities available to animators.

Although certain optional features were not fully implemented, the project
nonetheless met its core objectives and established a solid foundation for future
improvements. The attention to detail in both hardware and software design en-
sures that SMAT can be further refined and adapted for a variety of applications.
In the end, this work showcases teh potential for automated tools to transform
traditional stop motion animation and stands as an acomplished example of en-
gineering and innovation.

References

[1] Autodesk. Fusion 360. https://www.autodesk.com/br/products/
fusion-360/overview.

[2] Raspberry pi. https://www.raspberrypi.com/.

[3] Allegro MicroSystems. A4988 datasheet. https://www.alldatasheet.
com/datasheet-pdf/pdf/338780/ALLEGRO/A4988.html.

[4] Allegro MicroSystems. A3967 datasheet. https://www.alldatasheet.
com/datasheet-pdf/pdf/83571/ALLEGRO/A3967.html.

[5] Tom Nardi. Mastering stop motion through machine learning.
https://hackaday.com/2021/09/20/mastering-stop-motion-
through-machine-learning/, 2021.

[6] Google Developers. Blockly. https://developers.google.com/blockly?
hl=pt-br.

[7] Open source computer vision library. https://opencv.org/.

[8] Bogdan Tomoyuki Nassu. Background chroma key removal. https://www.
youtube.com/watch?v=rkQQw0wGay8, 2016.

https://www.autodesk.com/br/products/fusion-360/overview
https://www.autodesk.com/br/products/fusion-360/overview
https://www.raspberrypi.com/
https://www.alldatasheet.com/datasheet-pdf/pdf/338780/ALLEGRO/A4988.html
https://www.alldatasheet.com/datasheet-pdf/pdf/338780/ALLEGRO/A4988.html
https://www.alldatasheet.com/datasheet-pdf/pdf/83571/ALLEGRO/A3967.html
https://www.alldatasheet.com/datasheet-pdf/pdf/83571/ALLEGRO/A3967.html
https://hackaday.com/2021/09/20/mastering-stop-motion-through-machine-learning/
https://hackaday.com/2021/09/20/mastering-stop-motion-through-machine-learning/
https://developers.google.com/blockly?hl=pt-br
https://developers.google.com/blockly?hl=pt-br
https://opencv.org/
https://www.youtube.com/watch?v=rkQQw0wGay8
https://www.youtube.com/watch?v=rkQQw0wGay8

	Introduction
	Proposed solution overview

	Project Specification
	Development
	Mechanical Structure
	Puppet
	XY Table

	Electronical
	Main Connection Board
	Stepper Motor Control Module
	Servo Motor Control Module
	Power Supply
	Peripherals and Utilities

	Software
	Embedded Software
	User Interface Application

	Results
	Budget
	Schedule

	Conclusions

