
Federal University of Technology - Paraná – UTFPR

Academic Department of Electronics – DAELN

Academic Department of Informatics – DAINF

Computer Engineering
Integration Workshop 3 (ELEX22) – S71 – 2023/2

Technical Report
Patrole: Mall Security Bot

Anderson N. Silva– andersonnogueira@alunos.utfpr.edu.br

Andrea A. S. Oquendo– oquendo@alunos.utfpr.edu.br

Erick T. Andrade– henriquecastro@alunos.utfpr.edu.br

Fernanda R. C. Neto – fernandaneto@alunos.utfpr.edu.br

Gabriel H. K. Godinho – gabrielgodinho@alunos.utfpr.edu.br

November 2023

Abstract

In the ever-evolving urban environment, night security in spaces such as
shopping malls has become a vital concern. Night security in shopping
malls plays a crucial role in preserving the integrity of these urban spaces
after business hours. During the night, the absence of commercial activ-
ity creates an environment prone to unwanted activities such as break-
ins, theft and vandalism. This context highlights the need to guarantee
the integrity of these spaces after business hours, which requires innova-
tive solutions. In addition, the complexity of night security work is accen-
tuated by the vastness of the areas to be monitored and the limited vis-
ibility provided by reduced lighting. The potential presence of intruders
further adds to the complexity, requiring innovative approaches to main-
tain security and tranquility in these essential community facilities.The
solution for night security in shopping centers has taken shape through
the Patrole project, an autonomous robot that travels along a predefined
route. Equipped with people and movement detection algorithms, the
robot is capable of emitting a high-volume audible alarm when it identi-
fies suspicious activity. This project is complemented by integration with
a smartphone app, giving the night security guard the ability to monitor
the robot’s status in real time, including its location and any relevant de-
tection. This comprehensive approach aims to improve the effectiveness
of night security by offering a proactive response to potential threats.

1 Introduction

This project was developed for the Integration Workshop 3 subject, of the Com-
puter Engineering course at UTFPR, Curitiba Campus.

As motivating factors for the development of this prototype, we can cite the
following problem: Ensuring night security in places like shopping malls is cru-
cial for preserving urban integrity after business hours. The absence of com-
mercial activity at night creates a vulnerability to incidents such as break-ins

1

Brazil -

Technical Report: Patrole 2

and vandalism. Protecting these areas requires inventive solutions because of
the large areas to monitor and limited visibility from dim lighting.. The poten-
tial presence of intruders adds complexity, necessitating creative approaches to
maintain security and tranquility in these essential community hubs.

Considering these factors, we have established our mission and objectives:
to enhance the efficiency of night security guards by facilitating their work through
an automated method for detecting intruders in a specific region.

Figure 1: High-level diagram of how the project works

With these problems and motivations in mind, it was possible to develop the
project described in this document. By analyzing the diagram in Figure 1, it is
possible to understand how the user interacts with the robot, how it works and
the technologies used to make this possible.

All user interaction is done via the mobile application, where the user can
record routes, execute routes, view the current status of the patrol and receive
detection alerts.

The application communicates with the robot via HTTP requests, through
which all commands are sent. The data collected by the robot, such as saved
routes, executed routes, steps, times and more, is all stored in Amazon’s RDS.
People and motion detection images are stored in Firebase.

The robot recognizes ArUCo markers on the wall to locate itself and repeats
the recorded route, taking short breaks to detect people and movements.

To illustrate a complete use case, the user first connects to the robot through
the application, then selects the option to record a route and guides the robot

needing

cloud server

a Database server(?)

[reference!]

Technical Report: Patrole 3

along the route, starting and ending by reading the same hub. To save the route,
the user can move the robot forward, rotate it to the left or to the right and,
finally, the user names the route, selects the interval between executions in min-
utes and selects the number of repetitions. After saving the route, the user chooses
the option to execute a route and selects the one that has been saved and posi-
tions the robot next to the first aruco. From that moment on, the robot will start
repeating the recorded route, sending updates of the arucos read to the applica-
tion and alerts of detections.

1.1 Overview

2 Project Specification

The project specification was separated into four main categories: Mechanical,
Embedded, Mobile Application and Web Server requirements. The functional
requirements for each of these categories can be found in Sections 2.1, 2.2, 2.3
and 2.4. Additionally, Section 2.5 outlines the anti-requirements.

2.1 Mechanical Functional Requirements

• FRM01 - The structure will consist of a support base with wheels and an
additional structure on top of that where will be positioned electronics
and the camera.

• FRM02 - The structure must be able to allow the robot to move around the
mall, monitoring the area.

• FRM03 - The structure will execute specific movements or actions based
on data received from the embedded system.

• FRM04 - The structure will execute specific movements or actions based
on data received from the embedded system.

• FRM06 - The structure must be able to move at a speed of at least 20 cm/s.

• FRM07 - The structure should stop moving and trigger an audible and
app-based alarm if it detects a safety problem as unexpected: movement,
presence or sensor data.

• FRM08 - The camera support must be able to maintain the camera’s height
throughout the entire journey without any obstruction to cameras vision.

• FRM09 - The structure will move by means of a system of a pair of motors.

ArUcO marker

markers

(You should explain what are and where are positioned these ArUcO markers....say it is a marker
that allow for identification of the "relative position" of the robot relative to the marker, and that
 the markers should be placed in the walls along the route, at most spaced
 how many meters from each other....and that each maker has an unique ID...)

components

 are positioned.

repetido?

presence?sensor data? what do you mean?

Technical Report: Patrole 4

2.2 Embedded Functional Requirements

• FRES01 - The embedded system must have a central unit for image pro-
cessing, and a second unit for sensors and motors.

• FRES02 - The embedded system secondary unit must send all collected
data to the central unit.

• FRES03 - The embedded system central unit must send all collected data
to the cloud server.

• FRES04 - The embedded system central unit must send motor movement
actions to the secondary unit which need to be performed.

• FRES06 - The embedded system must be able to collect data about the
orientation of the movement during a surveillance route.

• FRES09 - The embedded system must be able to collect images in real time
from the environment during a surveillance route.

• FRES10 - The embedded system must be able to trigger an alarm to make
sound, alerting the operating team.

• FRES11 - The embedded system must have a 5V power supply to connect
the microcontrollers, servo motor and sensors..

• FRES12 - The embedded system must have a 12V power supply to power
the robot’s motors.

• FRES14 - The system must have an integrated circuit to centralize the con-
nection of all sensors to its unit of processing.

• FRES15 - The embedded system must control the movement and speed of
the motors.

• FRES16 - The embedded system must process the camera images looking
for ARUCO markers.

• FRES17 - The embedded system must be able to reproduce a route previ-
ously recorded by the operational team.

• FRES18 - The embedded system must be able, for each identified ArUco
marker, to reproduce the movements recorded up to the reading of the
following ArUco marker.

• FRES19 - The embedded system must trigger the alarm if it detects a sus-
picious occurrence.

• FRES20 - The embedded system must process the camera images looking
for the presence of people and movement.

x

5?

7?8?

Technical Report: Patrole 5

• FRES25 - The embedded system must collect and send the Camera data
to the cloud server in real time.

• FRES26 - The embedded system requests the route’s information to the
cloud server and keeps it locally when starts executing a previously recorded
route.

• FRES27 - The embedded system must be able to establish a communica-
tion with operating team through the mobile app.

• FRES28 - The embedded system must send security and control notifica-
tions to the operating team.

• FRES29 - The embedded system must be able to execute commands re-
ceived from the operating team.

• FRES30 - The embedded system must stop working if an ArUco marker is
not found when it was expected to be and wait for the operating team to
intervene.

• FRES31 - The embedded system must stop right after the alarm system is
triggered, depending on interaction with the security team to get back on
track.

• FRES32 - The embedded system must be able to communicate between
the central processing unit and the secondary one, and must use the I2C
protocol to do so.

• FRES33 - The embedded system must have a voltage regulator that will be
connected between the motors’ power supply and the second processing
unit.

2.3 Mobile Application Functional Requirements

• FRMA05 - The mobile app must allow the operating team to select a pre-
viously recorded surveillance route to execute.

• FRMA06 - The mobile app must allow the operating team to visualize the
status of a current running robot.

• FRMA08 - The mobile application must allow the operation team to stop
the robot at any time and the robot will remain stationary until someone
physically intervenes.

• FRMA09 - The mobile application must notify the operating team that the
surveillance route has been successfully completed.

• FRMA10 - The mobile application must notify the operations team of any
anomalies in the data received from the sensors.

21?22?23?24?

xxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxx

1?2?3?4?

7?

Maybe remove the numbers?Re-number?

Technical Report: Patrole 6

• FRMA11 - The mobile application must notify the operations team of any
unwanted movements according to the images obtained.

• FRMA12 - The mobile application must allow the operational team, at
the end of the route recording, to name it and define the time between
rounds..

• FRMA13 - The mobile application must communicate with the cloud server
to present information about routes and real-time events.

• FRMA18 - The mobile app must allow the operating team record one or
more surveillances route.

• FRMA19 - The mobile application must indicate the start of recording of a
new surveillance route.

• FRMA20 - The mobile application must have a mechanism to indicate the
end of the recording of a surveillance route.

• FRMA21 - The mobile application must enable the operational team to
navigate the robot’s movements between one ArUco marker and the next
one during the configuration phase..

• FRMA22 - The mobile application must have a mechanism to indicate
when to search for an ArUco marker to read and store route information
from the last marker to the current marker.

2.4 Web Server Functional Requirements

• FRWS01 - The web server must store data collected from the sensors.

• FRWS02 - The web server must store, for each user, routes that were recorded
for each robot.

2.5 Anti-Requirements

• AR01 - The robot won’t be able to map its surveillance route automatically.

• AR02 - The robot won’t be able to go around obstacles and returns to its
route.

• AR03 - The robot won’t be able to climb stairs and/or escalators.

• AR04 - The robot won’t be able to continue its patrol if there is no internet
connection.

• AR05 - The robot will not work properly and may lose its way if the ground
is wet.

x
always spell the same way!

(which sensors?)

Technical Report: Patrole 7

• AR06 - The robot won’t be able to detect its route if the ARUCOs are not
positioned in the same places as when the route was recorded, including
the same height from the ground.

• AR07 - The robot won’t continue on its route if the ARUCO marker display
is somehow obstructed.

• AR08 - The robot won’t be able to recharge automatically, it will depend
on the security team to connect it to the charger.

• AR09 - The robot won’t be able to handle rough terrain or small objects on
the ground by its own.

• AR10 - The robot will not be able to carry out the surveillance process if
the user doesn’t record a route manually.

• AR11 - The robot will not be able guarantee properly functioning in the
event of deliberate or intentional actions attempting to alter its running
route.

• AR12 - The robot will not be able to allow route changes during the execu-
tion of a surveillance route.

• AR13 - The robot will not be able to return to its route if it doesn’t find the
next ARUCO on the route.

• AR15 - The robot will not be able to send the history of data captured from
the sensors while it was disconnected.

• AR16 - The system will not be able to allow the user to alter previously
recorded and stored routes.

• AR17 - The system will not be able to access camera images if it does not
have Internet access.

• AR18 - The height of the camera in the structure is not changeable.

3 Development

In this section, we will provide an in-depth overview of the processes and chal-
lenges encountered during the development of the project, accompanied by de-
tailed technical information.

Technical Report: Patrole 8

3.1 Mechanical Structure

To start the project, we borrowed the Bellator from our professors. It’s a wooden
structure with two windscreen wiper motors connected to two large front wheels,
and at the back there’s a silly wheel. The structure also has threaded bars at-
tached to it. As shown in Figure 2.

Figure 2: Bellator

However, the material of its wheels was very worn, so we removed it and put
a non-slip material in place, because precision in the movement of the wheels
was crucial for us, since any slightest slip could change the direction of the robot
and it could lose its way. As shown in Figure 3.

Figure 3: Bellator Wheels With the Non-Slip Material

caster (rear)

as

Technical Report: Patrole 9

Now we needed to define the structure of our robot, so we made a 3D model
using TinkerCad[1]. The structure consists of a base and 3 boxes, one for the
hardware components, another for the horn and the smallest for the camera,
which was later removed. Figure 4a shows the result of the modeling and figure
4b the assembled structure.

(a) Structure Design (b) Structure Assembled

Figure 4: Robot Structure

3.2 Hardware

The hardware part of the project isn’t that complex, we can see in figure 5 below
that the circuit consists of the 2 wheel motors with an encoder in each of them
so we can control the speed and number of revolutions of the wheels, a compass
sensor so we know the direction the robot is pointing, an ESP32 that will control
the robot and the communication, and finally a Raspberry Pi 3B with a camera
and a servo motor, the rasp will process the images from the camera. We used
Kicad[2] to develop the hardware design.

Electronic

xxx
is presented in Figure 5. The

that acquires and processes The servomotor allows pointing

the camera to the left(-90 degrees),
front(0 degrees) and right(+90
degrees).

Technical Report: Patrole 10

Figure 5: Hardware Design

To power the hardware we used a 12V, 7000mAh battery for the motors and
the ESP32, and for the Raspberry we used a 10000mAh powerbank. As for the
camera, our initial plan was to use one with night vision and a bluetooth con-
nection, but after a series of tests we had to use our risk response plan and used
a camera without night vision and put a flashlight next to it, as the robot will be
guarding a shopping center at night, i.e. in a dark environment. Figure 6 shows
the Raspberry Pi v2 8MP camera that was used to develop the project.

Figure 6: Camera

Technical Report: Patrole 11

3.3 Software

3.3.1 Movement Detection

Our initial plan for motion detection was to detect while the robot was in mo-
tion, but after a lot of research and conversations with researchers in the field we
discovered that it was very complex and we wouldn’t be able to implement it in
time. So we used our risk response and implemented small pauses in the robot
and an algorithm to detect movement with a static camera.

To detect movement, we used Python’s[3] OpenCV[4] module and the back-
ground subtraction technique [5]. It works as follows: the camera is initialized
and the first frame captured is saved as a reference. From then on, all subse-
quent frames are compared with the first one, and if there is a pixel difference
greater than the established threshold, movement is detected. Here we can see 2
images, in Figure 7a we see a frame from a video where a person is moving their
hands, as we can see, the motion detection algorithm has already been applied
and we have 2 rectangles indicating where, and in Figure 7b we see the result
of the background subtraction, in the white squares is where the subtraction
showed a difference from the background.

(a) Frame from Camera (b) Background Subtraction

Figure 7: Movement Detection

When using the robot, we set a time of 5 seconds for motion detection, i.e.
the camera records and processes the frames for 5 seconds to try to detect some-
thing.

3.3.2 Person Detection

For people detection, our first attempt was also with OpenCV, but the number of
false positives was enormous, which would have greatly hindered the operation
of our project, because every time a person is detected, the alarm is triggered
and the robot stops.

Technical Report: Patrole 12

Then we moved on to the use of YOLO (You Only Look Once) [6], which is
based on a neural network model. It is a deep learning algorithm that uses a
convolutional neural network (CNN) for object detection. The results with this
new algorithm were very satisfactory, managing to detect people when only part
of them was in the image, such as an arm or a leg. However, the computational
cost is much higher, so rasp takes a few seconds to process everything.

In figure 8a we can see an example image that was submitted to the algo-
rithm [7], the green rectangles indicate a detected person, and in figure 8b we
see an example where the algorithm was able to detect a person with just their
face.

(a) Test with whole body (b) Test with just face

Figure 8: Person Detection

3.3.3 Aruco Detection

We use OpenCV for ArUCo detection, as it has its own functions for this purpose.
We take 1 frame and look for an aruco, if it is found, its id is returned along with
an estimate of the distance from the camera to the aruco, we use this value to
adjust the robot when executing the route. Figure 9 shows an ArUCo with id 2
being detected.

Figure 9: Aruco Detection

the Raspberry Pi

ArUco?ArUcO?ArUCo?

a marker

marker
maker

ArUCo? What does ArUcO means?Do you know?

"ArUco stands for
Augmented Reality University of Cordoba"

*ArUco markers were originally developed in 2014 by S.Garrido-Jurado et al.,
in their work “Automatic generation and detection of
highly reliable fiducial markers under occlusion“.

(https://www.researchgate.net/publication/
260251570_Automatic_generation_and_detection_of_highly_reliable_fiducial_markers_under_occlusion)

Technical Report: Patrole 13

3.3.4 Mobile Application

For the application, we used React Native. The app is a very important part of
our project, because it’s where it that all the actions are done. The first screen
that appears when you open the app is to connect to the robot. Once connected,
you can record a new route or execute saved routes. To save a route you can ro-
tate the robot in both directions or go forward, you also have the option of read-
ing an aruco, to improve accuracy when executing the route. When the robot is
executing the route, the screen shows information about the route, such as the
number of markers, the last marker read, etc. If a person is detected or a move-
ment is noticed, a notification is sent to the application and a photo taken by
the camera is displayed.

Using Python, it’s possible to communicate directly with the AWS database,
but a front-end library like React Native doesn’t give us that option. Therefore,
a NodeJS back-end was developed using JavaScript and hosted on AWS EC2 [8].
The main calls to the back-end from the application are to retrieve the route list
and to receive and send notifications during the monitoring phase.

Figure 10: App Screens 1 to 3

ArUCo

Figures 10, 11 and 12 present the designed interface of the App.

Technical Report: Patrole 14

Figure 11: App Screens 4 to 6

Figure 12: App Screens 7 to 9

3.3.5 Firmware

The firmware part of this project was implemented on two different processing
units. The central, and primary one, was a Raspberry Pi 3 Model B, intended to
work with high level operations, able to handle: communication with the mobile
application; communication with the secondary unit, sending data to the cloud
databases and detections of Aruco Markers, persons and movements. The sec-
ondary unit was used to centralize the peripherals of the robot as the compass
module, the camera servo motor and the motor modules.

Specifically, the coding part of the central unit was made with Python version
3.9.2. This part of the firmware handled various types of tasks such as:

Technical Report: Patrole 15

• Mobile Application Communication: implemented through a local server
using the back-end framework Flask [9]. The communication between the
central unit and the mobile app was made through HTTP requests to spe-
cific routes that corresponds to commands for Patrole.

• ESP32 Communication: established with an I2C interface. The commu-
nication was implemented using interruptions on the specific SDA port
of the ESP, sending data that corresponds to a command which the sec-
ondary unit must execute and, after that, return a successful message in-
dicating that the command was complete.

• Cloud Database and Storage: the cloud storage for the images was made
using the Firebase Storage [10] feature, that can store files and allow ac-
cess to them remotely. Finally the cloud database used was the Relational
Database Service (RDS) [11] platform from Amazon Web Services (AWS).

• Detections: ArUco, person and movement detections was explained in
sections 3.3.3, 3.3.2 and 3.3.1, respectively.

Furthermore, The coding of the secondary unit was made using C program-
ming language, based on the ESP IDF API Reference [12]. The main feature
of this part of the firmware were task management, in which a task to be per-
formed was received from a command sent by the central unit, such as moving
the camera’s servo motor to the 90 degree position, activation of motors, etc. The
received command triggered an interrupt that allowed immediate processing,
or placement in a task queue, of that command understood through the bytes
transmitted from one unit to another. At the end of executing this command, a
response was sent indicating the success of the operation.

For more detailed information, the source code can be found at folder firmware
on the remote repository located at GitHub in the following link: https://github.
com/Andxyz8/IntWork3_ELEX23. Also the classes diagrams of the complete
firmware, and the ERD of the cloud database can be found in the documenta-
tion/diagrams folder.

4 Results

4.1 Budget

Table 1 displays a list of the materials utilized in the construction of this project.
During project planning, the expected budget was 1170 reais, and if we included
the risk plan, the expected budget would increase to 1770 reais. After the project
was completed, our total expenditure was 1242 reais, taking into account that
we used one risk plan that would affect our budget, when compared to what
was expected, there was a reduction of approximately 30% in our budget, when
compared to the estimated with risk responses.

t

R$

R$

xxxxxxxxxxxxxxxxxxxxxxxxxx

xx

xxx

response

Technical Report: Patrole 16

Table 1: Budget

Name Qty. Un. Cost Cost
Powerbank 10000mAh 1 R$ 80,00 R$ 80,00
Baterry 12V 7000mAh 1 R$ 95,00 R$ 95,00
Raspberry Pi 3B+ 1 R$ 300,00 R$ 300,00
Camera 1 R$ 80,00 R$ 80,00
Servo-Motor 360 1 R$ 19,00 R$ 19,00
Encoders 2 R$ 10,00 R$ 20,00
Bellator 1 R$ 200,00 R$ 200,00
Motor module BTS7960 2 R$ 60,00 R$ 120,00
Alarm siren 1 R$ 38,00 R$ 38,00
Compass module 1 R$ 25,00 R$ 25,00
ESP32 1 R$ 35,00 R$ 35,00
Non-slip tape 1 R$ 22,00 R$ 22,00
MDF Structure 1 R$ 96,00 R$ 96,00
Flashlight 1 R$ 57,00 R$ 57,00
Extra components 1 R$ 55,00 R$ 55,00
Total R$ 1242,00

4.2 Schedule

This project was developed over a period of 10 weeks, involving the comple-
tion of 7 distinct deliverables, including the week allocated for elaborating this
technical report and the final presentations. Table 2 provides an overview of the
project schedule and the hours dedicated to each deliverable. In the planning,
we expected to work a total of 461 hours on the project; in the end, we ended up
working 475, i.e. a 3% increase in the hours worked.

Table 2: Schedule

Phase Estimated hours Worked hours
Mechanical Design 23 18
Mechanical Project + Electronic De-
sign

55 39

Electronic Project + Software Design 114 96
Software Project 132 139
Mechanics, Hardware and Software
Integration

32 30

Overall Integration and Functional
Tests

36 116

Full Technical Report + Video + Pre-
sentation

69 37

Total 461 475

 Base

Technical Report: Patrole 17

5 Conclusions

During the development of the project we faced many difficulties and challenges.
But with challenges comes learning. The Integration Workshop 3 course proved
to be a space for us to challenge ourselves and learn to work as a team and in a
professional manner like never before on the course.

A lot of things went wrong, especially in the final part of the integration, the
reflection of which can be seen in the schedule, where we worked much harder
than expected. The team concludes that they underestimated many tasks in
the planning phase, tasks that seemed quick were not. We had to use a lot of
risk responses because we thought that things like motion detection during the
robot’s movement would be possible to do on time.

Despite all the difficulties, the team is satisfied with the result, as it met al-
most all the planned mandatory requirements, with exception of the 7 hours of
battery autonomy. The team is also proud of the effort made to complete this
project, as we didn’t give up even when it looked like everything was going to go
wrong.

References

[1] Kai Backman. TinkerCad, 2011. https://www.tinkercad.com/.

[2] KiCad EDA - Schematic Capture & PCB Design Software, 2023.
https://www.kicad.org/.

[3] Guido van Rossum. Python 3.12.0, 2023. https://www.python.org/.

[4] Willow Garage. OpenCV 4.5.2, 2021. https://opencv.org/.

[5] Muhammad Sabih. Background subtraction in computer vision, 2022.
https://medium.com/@muhammadsabih56/background-subtraction-in-
computer-vision-402ddc79cb1b.

[6] Glenn Jocher. YOLO, 2021. https://github.com/ultralytics/ultralytics.

[7] Luana Gonçalves. Detecting people with YOLO and OpenCV, 2019.
https://medium.com/@luanaebio/detecting-people-with-yolo-and-
opencv-5c1f9bc6a810.

[8] Amazon Web Services. Amazon EC2 - Elastic Compute Cloud. Accessed:
2023-11-29.

[9] Armin Ronacher. Flask Documentation, 2023. https://flask.
palletsprojects.com/.

[10] Google. Firebase Storage. https://firebase.google.com/docs/
storage.

Technical Report: Patrole 18

[11] Amazon Web Services. Amazon RDS - Relational Database Service. Ac-
cessed: 2023-11-29.

[12] ESPRESSIF. Espressif IoT Development Framework (ESP-IDF) - API Ref-
erence, 2023. https://docs.espressif.com/projects/esp-idf/en/
latest/esp32/api-reference/index.html.

