
Federal University of Technology - Paraná – Brazil – UTFPR

Academic Department of Electronics – DAELN

Academic Department of Informatics – DAINF

Computer Engineering
Integration Workshop 3 (ELEX22) – S71 – 2024/1

Technical Report
ParaSunflower

Estevão Vieira Gomes – estevao@alunos.utfpr.edu.br

Guilherme Libério de Souza e Silva – guilhermesilva.2018@alunos.utfpr.edu.br

João Rauli Sarmento – joaosarmento@alunos.utfpr.edu.br

Leonardo Bueno Fischer – leonardofischer@alunos.utfpr.edu.br

Lucas Iuri dos Santos – lucassantos.1994@alunos.utfpr.edu.br

Rafael Josef de Araújo Cordeiro Merling – rafaelmerling@alunos.utfpr.edu.br

Junho de 2024

Abstract

Many outdoor places, be it public or private, in big cities suffer with
lack of shading area. With this issue in mind we developed a project for the
Integration Workshop 3 course that offer a solution: a rentable parasol.

The main idea is that the user can use an app to localize and rent for a
period of time a parasol in a fixed location. To make the product more at-
tractive the user can control the parasol’s position with app commands or
set it to move automatically to follow the sun’s position. Another feature is
that all the system is powered by solar cells, making it more environmen-
tally friendly.

In this report we present every step of the development, with the com-
ponents used, schematics, the setbacks (with the solutions found) and the
results obtained.

1 Introduction

This project was developed for the Integration Workshop 3 subject of the Com-
puter Engineering course at UTFPR Curitiba.

This project has the intention to solve the following problem: outdoor places
may have large open areas with little or no shades, usually provided only by
trees. A way to deal with this problem is the use of a parasol, however, bringing
your own to a public park is usually a nuisance, since they are usually heavy and,
differently from beaches, it is not easy to dig the hole to put the parasol. Further-
more, if the sun moves and you lose your shade, you have no option other than
diggin another hole to reposition the parasol.

Sun-following systems have been developed for many purposes (e.g. mea-
suring radiation and optimizing solar energy generation). [1] proposed such a
system that served as reference for solving the aforementioned problem.

1

Technical Report: ParaSunflower 2

With all of this being said, the proposed solution consists on the creation
of a parasol renting system, providing easy access to parasols on public parks
and making sure of a shade on the area. Also, the parasol is able to follow the
sunlight for the user while rented, which guarantees the maximum amount of
sunlight covered. Another feature of the project offered to the user while renting
a parasol, is to be able to provide a USB output, which will be able to charge a
mobile phone or any electronical device that can be charged through that kind
of output, making use of the sunlight energy.

1.1 Overview

We now present a high level view of the project with its main components and
their relationships. The following block diagram illustrates them.

Figure 1: Block diagram of the project

The project main piece is the parasol, but it is only physically attached to the
photovoltaic cells and luminosity sensors. The parasol is placed on a support,
along with the batteries, electronic components and motors, that will be further
explained in the mechanical development.

Since the project is sun-powered we have the photovoltaic cells attached to
the main battery for charging purposes. The main battery is then responsible
for powering the main ESP32 microcontroller and the USB charging module for
mobile devices.

Technical Report: ParaSunflower 3

The ESP32 is the core of the project since it is involved in all communication
and motor control. We have a Global Positioning System and a Global System
for Mobile communicatioon modules connected to it to feed (through the GSM)
the ParaSunflower position (through the GPS) to a remote server maintained by
the owners. Thus, with multiple parasols installed on a park or another public
area, the user can locate the closest available parasol using the smartphone App.

By installing the ParaSunflower app, the user can fiind an available parasol
and rent it using the unique QR Code present in each unit. The renting allows
for the user to adjust the parasol either manually (adjusting the rotation and
deflectioon angle through app commands) or automatically (when the parasol
directs itself towards the sun using its four luminance sensors). Also, the user
has access to an USB charging port during the reenting period. The rental pay-
ment is completed using PIX technology, available in any bank account in the
smartphone.

The ESP32 has a connection to the mobile device that has the app installed
through its in-built Bluetooth Low Energy functionality. The app sends com-
mands to manually adjust the ParaSunflower position, rent more time, toggle
between manual and automatic movement. And the ESP32 will send acknowl-
edgment messages to the app.

The four luminosity sensors attached to the parasol are connected to the
ESP32, they are used to get luminosity data from diametrally opposed positions.
These data are used to activate the motors.

There are two (window lift) motors used, one for rotational movement and
another for radial movement. These motors were chosen because of their pro-
viding torque, needed for the parasol movement, that could not be provided by
other motors (e.g. stepper motors) in the same price range. The motors have one
encoder attached to each of them, these encoders are connected to the ESP32 to
provide information about the movement of the motors to avoid problems like
multiple rotations that would cause disorder in the cables.

Between the motors and the ESP32 there are two H bridges that are gonna
drive the motor movement according the direction provided by the ESP32 (and
the luminosity sensors).

On Figure 2 there is a visual representation of the communication channels
on the device and how they will operate through their working time.

Technical Report: ParaSunflower 4

Figure 2: Communication channels of the project

2 Project Specification

The project was divided into three main development parts, Mechanical, Elec-
tronical and Software, each one of them has their own set of Functional Require-
ments presented on the following sections: 2.2, 2.3 and 2.4. Also there is the need
for some Anti-Requirements, presented on the section 2.5. For the optional re-
quirements, it is possible to check the page on the blog [2]

2.1 Overall Requirements

• The project considers 2 actors, the user and the owner. The requirements
are written considering the actions (and responsibilities) of both actors.

2.2 Electronical Functional Requirements

• EFR01 - The parasol must be able to gather information about the sun’s
position and set its own position, according to the sun’s automatically.

• EFR02 - The parasol must communicate with the mobile app.

• EFR03 - The parasol must have an USB output able to recharge mobile
devices.

• EFR04 - The parasol must have its power supplied by a battery.

• EFR05 - The system must use encoder to know the position of the para-
sun’s parts.

2.3 Mechanical Functional Requirements

• MFR01 - The parasol must be able to align with the sunlight from 9AM to
3PM.

Technical Report: ParaSunflower 5

• MFR02 - The parasol must be able to rotate 360º on its own axis.

• MFR03 - The parasol must be able to move radially, formin up to a 45º
angle with the normal line.

• MFR04 - The parasol must be able to perform the both the rotational and
radial movement automatically.

• MFR05 - The parasol must be always open.

• MFR06 - The parasol must have a box on its base to hold the electronical
components and circuitry.

• MFR07 - The parasol must have a platform coupled on its top.

• MFR08 - The parasol must be attached to a rotatory base.

• MFR09 - Both motors responsible for the movements (one for the rota-
tional and the other for the radial), after the reductions, must have a 5RPM
+- 2.5RPM velocity.

2.4 Software Funcitonal Requirements

• SFR01 - The app must provide the option for the user to make the parasol
automatically set its own position.

• SFR02 - The app must be able to connect with the remote server

• SFR03 - The must be able to read QR Code.

• SFR04 - The app must have the option to select the amount of time the
parasol will be unlocked.

• SFR05 - The app must provide the option to add more time

• SFR06 - The app must be able to accept payments

• SFR07 - The app must clearly inform the price for every payment.

• SFR08 - The app must clearly show how much rented time the parasol has
left.

• SFR09 - The app must send a notification to the user 5 minutes before the
time is expired.

• SFR10 - The remote server must be able to process payments

• SFR11 - The remote server must warn the app in case of a payment being
accepted.

• SFR12 - The remote server must monitor current weather conditions.

Technical Report: ParaSunflower 6

• SFR13 - The app must inform the user if the normal charge mode is avail-
able on the parasol.

• SFR14 - When the using conditions change to unsuitable, the app must
send the user a notification.

2.5 Anti-Requirements

• AR01 - The parasol will NOT communicate with other instances of itself.

• AR02 - The parasol will NOT have a digital display.

• AR03 - The parasol will NOT monitor wind speed nor rain through sensors.

• AR04 - The app will NOT have a Sign Up Feature.

• AR05 - The system will NOT accept any payment method other than PIX.

• AR06 - The parasol will NOT measure temperature.

• AR07 - The system will NOT distinguish between sunny and cloudy days.

• AR08 - The app will NOT have custom rent time, only preset ones.

• AR09 - The app will NOT work on IOS or nay other operational system that
isn’t Android.

• AR10 - The parasol will NOT have an AC outlet for phone charging.

• AR11 - The parasol will NOT be accompanied by tables or chairs.

• AR12 - The parasol will NOT be usable on beaches or sandy areas.

• AR13 - The parasol’s DC motors will NOT be able to move all at the same
time.

• AR14 - The parasol will NOT rotate faster than 5º per second.

• AR15 - The parasol will NOT be movable by the user.

• AR16 - There will NOT be an APP for the owner, all communications with
the owner will happen by way of SMS messages.

• AR17 - The parasol wll NOT be able to work on weathers with winds faster
than 19km/h (3rd degree in the Beafourt Scale).

3 Development

This section describes the project’s development process, describing the tech-
nical details as well as some difficulties and how they were handled. Further
details on the development progress can be obtained in the project’s blog.

Technical Report: ParaSunflower 7

3.1 Mechanic

For the initial planning of the mechanical structure, it was necessary to consider
the kind of movements the adjustments would require. With that in mind, it
was planned to make the structure a dual-axis kind, with one of them being a
rotational one, where the parasol rotates on his own axis and the other being a
radial one, where the parasol can adjust its angle towards the normal line, this
created the need for a base that is stable enough to deal with those movements.
The sketches of the base were made on Tinkercad[3] and can be seen on the
figures 3a and 3b.

(a) Common view of the base

(b) Front view of the base

Figure 3: Design of the base

The base has two layers: a bigger one to create the work room for the other
layer while giving the initial stability and space to add some spare weights to in-
crease the stability of the base on the ground; and a second, smaller one consist-
ing on the wooden base, that has all parts responsible for the radial movement
on it’s top. Between the wooden bases are the rotatory base and a gear, which
connects with the motor on the side, initially planned to be through a bicicle
crown and a chain. On the smaller base there is a support to hold the motor re-
sponsible for the radial movement with its gear is connected to the mechanical
arm.

Technical Report: ParaSunflower 8

Figure 4: Both bases coupled alongside the mechanical arm

Due to some issues with the bicicle crown, where the chain became loose
after a couple turns after every single test, the concept needed to be changed, so
it was replaced for a gear system, placing an intermediary gear in between the
motor’s gear and the mains rotatory gear. The design can be seen on Figure 5a
and the implementation on Figure 5b.

(a) Design of the intermediary gear

(b) Intermediary gear coupled on the base

Figure 5: Intermediary gear design and coupling on the base

For the build itself, everything with the exception of the rotatory base and
the mechanical arm was made using wood, since it would be easier to manipu-
late the material and make it have the necessary size. Each motion is performed
by its own DC motor, which is one used by electric windows in cars (the motor

Technical Report: ParaSunflower 9

used can be seen on figure 7. Those are very powerfull and alongside the gears
they generate a torque that is more than enough for any movement of the para-
sol.

Figure 6: Gear responsible for radial movement coupled to mechanical arm

Figure 7: DC Motor used on the project

3.2 Electronic

The firsts steps in the eletronical design of the ParaSunFlower were to map all
the GPIOs of the microtroller of choice, being the ESP32 DEVKIT V1[4], and
designing the circuit using KiCAD[5], for such tasks the production team first
had to know every components that were to be used through the development.
During repeated analysis some changes were made and some components were

Technical Report: ParaSunflower 10

changed, the final list of materials is as follows.

• 1x ESP32 DEVKIT V1

• 2x BTS7960 H-Bridges

• 4x BH1750 Light Sensors

• 2x KY-040 Rotacional Encoders

• 1x GPS NEO-6M module

• 1x GSM GPRS Sim900 module

• 3x 6V Photovoltaic Cells

• 1x USB charging module

• 1x HTZ5L battery

• 1x 12v 7Ah Elgin Nobreak battery

• 1x LM317 Voltage regulator

• 1x L7805 Voltage regulator

• 1x BC548 Transistor

• 1x CD4051 Multiplexer

In addition to the itens listed above, there are also a variety of resistors, ca-
pacitors and diodes used in the design to atain the proper functionalities of the
circuit.

As for the KiCAD portion of the project, the final design is presented on Fig-
ure 8.

Technical Report: ParaSunflower 11

Figure 8: Schematic used on the main PCB, made on KiCAD

Opting for a PCB to bring the circuit to life, a colleague was contacted to print
it, the design was also made in KiCAD, as showed in Figure 9.

Technical Report: ParaSunflower 12

Figure 9: PCB Design

Due to some problems, described in section 3.2.5, the team had to also use
a Universal PCB especifically for the multiplexer.

Most of the pins in the ESP32 are being used in this project, as showed on
figure 10, each pin’s functions is described in the following sections

Technical Report: ParaSunflower 13

Figure 10: ESP32 Pin Planning

3.2.1 H-Bridges

The H-bridge model chosen for the Parasunflower was the BTS7960[6], a robust
component able to take 43A of current and 50V. Mapped to GPIOs 15, 25, 33, and
32, the H-bridges were more than enough to control the powerful DC motors
used to move the parasol in both its axis (Figure 11a).

(a) H-Bridge

(b) Luminosity sensor

Figure 11: Components BTS7960 (H-Bridge) and BH1750FVI (Luminosity sen-
sor)

Technical Report: ParaSunflower 14

3.2.2 Luminosity Sensors

Positioned atop the parasol are all 4 BH1750[7] luminosity sensors (Figure 11b),
being able to measure up to 64 thousand lumens, with a maximum resolution of
0,5 lumen, these sensors make the whole project work. Each sensor’s clock are
mapped to GPIO22, the default I2C clock pin, coupled with the CD4051 Multi-
plexer so all four signals can be read by GPIO23 (Figure 12), the ESP32 is able to
use these measurements to control the parasol’s movement relative to the sun,
as shown in the section 3.3.1.

Figure 12: Sensors and Multiplexer Circuit Design

3.2.3 GPS and GSM

Since both modules use UART communication they are both mapped to the de-
fault UART ports of the ESP32, GPIOs 1, 3, 16 e 17. They’re used to determine the
Parasunflower’s latitude and longitude and send this information to the server
in order to show the parasol’s position in the app’s map.

3.2.4 Batteries and Solar Cells

The whole system is powered by two 12V batteries, which are charged by a series
association of three Photovoltaic Cells, each being able to supply 6V. A voltage
regulator is positioned after the cells so the 18V are regulated to 13.5V in order
to properly charge the batteries.

3.2.5 Challenges and Solutions

During development the team faced a couple of challenges regarding the eletron-
ical project and design, a total of 8 versions of the KiCAD design were made to
accommodate all the changes from the circuit.

At first, LDR sensors were to be used, but consulting with other professors
it was made clear that they would not be enough; in order to solve this prob-

Technical Report: ParaSunflower 15

lem the BH1750 was found, a highly accurate light sensor which returns light
measurements in Lumens, delivering exactly what the project demanded.

Another big challenge and setback was the limited number of I2Cs addresses
of the BH1750 sensor, having only two addresses while four were needed, this
problem was tackled again and again until finally being solved by using a CD4051
Multiplexer IC to loop between the signal of each sensor, a solution that, while
not simple, proved to be effective lefting GPIO15 available.

The team also faced a problem with the GPIOs of the ESP32, during the test-
ing phase of the BTS7960 H-Bridges, it was found that the GPIO35 specifically is
the only pin which is uncapable of generating PWM signals, luckly GPIO15 was
available because of the modifications in the light sensors circuitry (as described
above), so a simple change in the pin mapping was made.

Additionally the PCB printing process was at fault, in order to solve it, the
group had to carve some incomplete trails with a stylet, a simple yet arduous job.
Furthermore, problably the worst problem to uncover were the faulty wires go-
ing up to the light sensors: for still unknown reasons only the cold-colored wires
extracted from a network cable were not retrieving any data, among a plethora
of failed atempts, the only solution found was changing the cold-colored wires
to hot-colored ones.

3.3 Software

3.3.1 Firmware

The ESP32 code was designed to be easy to implement, read and make modifi-
cations on the fly, a couple of specific libraries were used, namely BH1750.h for
the light sensors, ESP32Encoder.h for the rotary encoder and the esp32 native
libraries for the Bluetooth Low Energy.

The most interesting part of the code is the logic behind the sun following
routine, as described in the flowchart presented in Figure 13.

Technical Report: ParaSunflower 16

Figure 13: Sun-following routine flowchart

Technical Report: ParaSunflower 17

It’s worth mentioning that the tolerance is calculated based on the mean
amount of light received by the sensors, the treshold of movement being set at
10% of that mean.

3.3.2 App

For the Android app project the chosen technology for implementation was Re-
act Native[8] using Expo and Typescript[9], due to the similarity to web develop-
ment, modules and libraries availability, easy to find documentation and a big
active community.

For the navigation between the app screens the react-navigation[10] module
was used, while zustand[11] library was used to mantain track of several vari-
ables according to App State changes. The permissions required to use the app
include acess to GPS location, camera and bluetooth scan and connect.

There were nine total screens created, but only seven used for the final ver-
sion, the reason for that difference being that two screens were made for de-
velopment testing purposes. The first screen in the flow is a map screen that
displays a Google Maps component with the user’s current location (Figure 14)
and markers in the parasols’ locations (Figure 15) obtained through a GET HTTP
request to the server. Also there is a text display and a button to proceed to the
next screen.

The next screen (Figure 16) consists of a camera component to read the QR
code displayed on the parasol containing it’s ID. Once the QR code is sucess-
fully read the app automatically navigates to the next screen (Figure 17) where
there are time options and prices for each, consisting of 10, 30, 45 and 60 min-
utes with a price of R$0,25 per minute, once the user selects the desired option
it proceeds to a screen (Figure 18) displaying the total price to be paid and a but-
ton to generate a PIX code, which once clicked makes a POST HTTP request to
the server sending the parasol’s ID and time selected and receiving back the PIX
code. It also makes the app go to the next screen (Figure 19) where the code gen-
erated is displayed along with a button to copy it to clipboard and a five minute
timer, in this screen the app makes requests(polling) to the check payment API
endpoint, once there is a status different from pending the app proceeds accord-
ingly: if cancelled, it goes back to the generate PIX code screen, if returns that
the weather conditions are not appropriate it returns to the first screen and if
approved proceeds to the time remaining and controls screen.

In this screen there are some information being displayed: there is a timer
with the total time payed for, if not connected to the parasol via bluetooth a text
is displayed requesting the user to connect to it using a button located in the
lower part of the screen alongside an "Add Time" button which leads to the same
flow described before starting from time options. If not connected via bluetooth,
the other buttons remain disabled, and once it is the app sends a command to
the ESP signalizing that the rent process was successful and the buttons become
available. The parasunflower starts on auto mode, displaying only a button to

Technical Report: ParaSunflower 18

Figure 14: User Location on Map Figure 15: Parasol Marker on Map

switch to manual mode, once switched more buttons show up, giving the op-
tions to rotate left and right and to radially move up and down, also a button to
switch back to auto is displayed. The different situations of this screen can be
seen in Figures 20, 21, 22 and 23.

As for the main challenges during the implementation there were many is-
sues encountered, among them some problems with the initial implementation
using Javascript instead of Typescript, which made it harder to perceive errors
due to the lack of some pre-compilation checks only present in Typescript, also
for the implementation of the bluetooth integration that all sources found used
it instead of Javascript. Furthermore some conflicts between modules caused
delays in the development and when in time for non-development builds some
problems also appeared with permissions, server communication and creden-
tials for the Google Maps API, which requires a development licence in Play Store
to work in internal distribution builds.

3.3.3 Server

The server was projected and made using the Python’s Fast API[12] framework
and the PostgreSQL[13] database, the integration with the PIX payment was done
using the Mercado Pago API[14], everything was deployed in an AWS EC2[15]
service. The following endpoints were created on the API:

• Create Rental: Receives the ID of the parasol and the time selected by the
user on the app. This endpoint will check the wind conditions using the
OpenWeatherAPI to know if the weather conditions are suitable for the
renting and insert the new rental on the database. At the end it will return

Technical Report: ParaSunflower 19

Figure 16: QR Code Reading Figure 17: Time options

Figure 18: PIX generation Figure 19: PIX response

Technical Report: ParaSunflower 20

Figure 20: Controls auto mode with
bluetooth off Figure 21: Controls auto mode with

bluetooth on

Figure 22: Controls manual mode
with bluetooth off

Figure 23: Controls manual mode
with bluetooth on

Technical Report: ParaSunflower 21

the copy and paste PIX code from the Mercado Pago API alongside the
rental ID.

• Check Payment: Receives the ID of the rental. This endpoint checks the
condition of the PIX payment on the Mercado Pago API, if it is considered
as approved, the rental is updated on the database with the date of the ap-
provement and it returns the expiration date alongside the payment status
and payment ID, otherwise it just returns the payment status and payment
ID.

• Create Time Addition Payment: Receives the rental ID and the time se-
lected by the user on the app. It updates the condition of the rental on the
database

• Get Parasuns Positions: It doesn’t receives any parameters. This endpoint
gets a list of the parasuns registered on the database and returns then.

• Create Location Entry: Receives the latitude, longitude and the ID of the
parasol. This endpoint inserts the new parasol with its coordinates on the
database

With this, the server is able to make the proper communications with the
device for the rental and locating routines.

4 Results

Some pictures of the device working are presented on Figure 24. This section
will also cover the budget of the project and the task report of the group, with
the estimated hours and the spent hours on the project

4.1 Budget

The final budget can be seen at the Figure 25. Totalizing R$1449,00, the most
expressive costs that can be pointed is the Parasol itself, which turned out being
quite more expensive than originally thought, alongside the set of bateries (mo-
torcycle and nobreak), the H-Bridges and luminosity sensors for a more robust
system. Even though the metal support for the parasol is the most expensive on
the list, the team already knew from the beginning its value and how crucial it
would be to make the project viable.

Technical Report: ParaSunflower 22

(a) ParasunFlower top view

(b) Parasun aiming directly at the sun

Figure 24: ParasunFlower at parque Barigui

Figure 25: Final Budget

Technical Report: ParaSunflower 23

4.2 Schedule

Considering Table 1 we can see that we even with a couple of issues and set-
backs, we were able to be under of the total time estimated with the 30% error
margin.

Category Time Estimated + 30% (h) Time Spent(h)
Mechanic 134,55 124,55
Electronic 292,5 250
Software 192,4 202
Integration 102,7 97
Presentation, Video,
Technical Report

68,9 98,5

Total 791,05 772,05

Table 1: Task Schedule

Technical Report: ParaSunflower 24

5 Conclusion

Making a final rewind on everything that happened during the development of
the project it is possible to get some points of relevance. One of them is the
necessity of a good first plan and the necessity for this plan to be flexible and
be able to change, either for planned risks or last minute problems that might
happen, for example, a task taking more time than initially estimated.

The other is to understand how the team works and adapt the communica-
tion in a way that every member can be on the same page. Because with this
strategy it gets easier to delegate the functions to the members and to know who
is delayed, on time or ahead and make the necessary adjustments if a necessity
occurs.

A lot of issues faced on the development were already expected, the main
one is the mechanical development due to the lack of knowledgement and ex-
perience on the sector. But also, the difficulty on some debugs due to amount
of connections that was necessary to get the necessary functionalities for the
project.

In a final conclusion, we were able to develop a sun following parasun that
can be rented by anyone in public parks and provide them with a easy to use so-
lution for their lack of shade, giving people a maximum shaded area at all times
or the option to manually adjust their parasun position without even having to
get up from their chairs.

References

[1] P Roth, A Georgiev, and H Boudinov. Cheap two axis sun following device.
Energy conversion and management, 46(7-8):1179–1192, 2005.

[2] Project’s functional requirements. https://scarlet-meeting-99f.
notion.site/Requirements-4e7d898a18884e95bdda89f65f8b41b2.

[3] Tinkercad official page. https://www.tinkercad.com/.

[4] ESP32 DataSheet. https://www.alldatasheet.com/datasheet-pdf/
pdf/1148023/ESPRESSIF/ESP32.html.

[5] KiCad. https://www.kicad.org/.

[6] BTS7960 Datasheet. https://www.alldatasheet.com/datasheet-pdf/
pdf/152657/INFINEON/BTS7960.html.

[7] BH1750 Datasheet. https://www.alldatasheet.com/datasheet-pdf/
pdf/338083/ROHM/BH1750FVI.html.

[8] React Native. https://reactnative.dev/docs/getting-started.

[9] TypeScript. https://www.typescriptlang.org/docs/.

https://scarlet-meeting-99f.notion.site/Requirements-4e7d898a18884e95bdda89f65f8b41b2
https://scarlet-meeting-99f.notion.site/Requirements-4e7d898a18884e95bdda89f65f8b41b2
https://www.tinkercad.com/
https://www.alldatasheet.com/datasheet-pdf/pdf/1148023/ESPRESSIF/ESP32.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1148023/ESPRESSIF/ESP32.html
https://www.kicad.org/
https://www.alldatasheet.com/datasheet-pdf/pdf/152657/INFINEON/BTS7960.html
https://www.alldatasheet.com/datasheet-pdf/pdf/152657/INFINEON/BTS7960.html
https://www.alldatasheet.com/datasheet-pdf/pdf/338083/ROHM/BH1750FVI.html
https://www.alldatasheet.com/datasheet-pdf/pdf/338083/ROHM/BH1750FVI.html
https://reactnative.dev/docs/getting-started
https://www.typescriptlang.org/docs/

Technical Report: ParaSunflower 25

[10] React Navigation. https://reactnavigation.org/.

[11] Zustand. https://docs.pmnd.rs/zustand.

[12] FastAPI. https://fastapi.tiangolo.com/.

[13] PostgreSQL. https://www.postgresql.org/.

[14] Mercado Pago API. https://www.mercadopago.com.br/developers/
pt/reference.

[15] Amazon EC2. https://aws.amazon.com/pt/ec2/.

https://reactnavigation.org/
https://docs.pmnd.rs/zustand
https://fastapi.tiangolo.com/
https://www.postgresql.org/
https://www.mercadopago.com.br/developers/pt/reference
https://www.mercadopago.com.br/developers/pt/reference
https://aws.amazon.com/pt/ec2/

	Introduction
	Overview

	Project Specification
	Overall Requirements
	Electronical Functional Requirements
	Mechanical Functional Requirements
	Software Funcitonal Requirements
	Anti-Requirements

	Development
	Mechanic
	Electronic
	H-Bridges
	Luminosity Sensors
	GPS and GSM
	Batteries and Solar Cells
	Challenges and Solutions

	Software
	Firmware
	App
	Server

	Results
	Budget
	Schedule

	Conclusion

