Federal University of Technology - Parana - Brazil - UTFPR
Academic Department of Electronics - DAELN
Academic Department of Informatics - DAINF

Computer Engineering Course
Integration Workshop 3 (ELEX22) — S71 -2025/1

Technical report
Melody: A musicalization tool for music teachers

Augusto Rosa - augusto.oliveira.rosal4@gmail.com
Bruno Emanuel Zenatti - brunozenatti@alunos.utfpr.edu.br
Fernando H. R. Caetano - caetanof@alunos.utfpr.edu.br
Nicolas Riuichi Oda - oda@alunos.utfpr.edu.br
Rafael E. Ishikawa Rasoto - rafaelrasoto@alunos.utfpr.edu.br
ROgéI‘iO Slabiski Melo - rogerioslabiski@alunos.utfpr.edu.br

June 2025

Abstract

Melody is an embedded system designed to assist music teachers in intro-
ducing music theory to children in an interactive and engaging way, and
also to teach musical theory to blind people. The project addresses the
growing difficulty younger generations face when learning instruments due
to frustration with steep learning curves and theoretical content. The sys-
tem is based on a wooden board painted with a music staff, where children
can place physical note markers and also an accessibility module to serve
as an interface to the blind student. A camera and Raspberry Pi process
these inputs, allowing the system to interpret and play the correspond-
ing melody. It operates in three distinct modes: free play with looped
melodies, guided placement based on preloaded songs via visual prompts,
and auditory guided interaction where children identify and place notes
based on pitch recognition. The project aims to bridge the gap between
playful learning and musical education, offering a novel, inclusive, and
teacher-endorsed approach to early music literacy.

1 Introduction

In recent years, educators have observed a growing disinterest among younger
generations[2] in learning musical instruments and theory. Traditional instru-
ments such as the piano or violin often require a prolonged and repetitive learn-
ing process, which includes memorization, fine motor skill development, and
reading musical sheets. For many children, especially in a fast-paced digital
age [1], the initial stages of learning music feel tedious and unrewarding. This
leads to frustration and abandonment before they reach a stage where music be-
comes expressive and enjoyable. The decline in perseverance is compounded by
a broader cultural shift that values instant gratification, making it increasingly

Technical Report: Melody 2

difficult for music teachers to maintain students’ engagement through conven-
tional pedagogical approaches.

Moreover, learning music theory presents even greater challenges for visu-
ally impaired individuals. Standard music notation is a visually dense and symbol-
heavy system, which inherently excludes those who cannot rely on visual cues.
Although Braille music notation exists, it has a steep learning curve, is rarely
taught, and is often disconnected from mainstream teaching environments. As
a result, blind students frequently lack access to inclusive tools that allow them
to learn music theory and engage with musical sheets in a dynamic and intuitive
way. This gap limits their ability to participate in formal musical education and
often discourages them from pursuing music altogether.

To address the growing lack of engagement among children in learning mu-
sic theory and the significant barriers faced by blind people in accessing tra-
ditional musical education, the Melody project proposes an inclusive and in-
teractive embedded system. This system integrates visual, auditory, and tactile
elements to create a dynamic learning experience centered around a physical
board painted with a musical staff. Children will be able to place physical mu-
sical notes on the board, which are then detected by a camera and interpreted
by a Raspberry Pi. The corresponding sound is played through a speaker, allow-
ing users to both visualize and hear the melody they’ve constructed. In this way,
Melody simplifies the abstract nature of sheet music into a playful, tangible, and
immediate form of feedback.

The system also includes multiple modes to accommodate different learn-
ing approaches: a free-play loop mode that plays user-created melodies con-
tinuously, a guided mode that displays a pre-set melody for replication, and an
auditory recognition mode where children place notes by identifying their pitch.
These features aim to reduce frustration in the early learning stages while pro-
moting experimentation and self-guided exploration. In addition, the system
considers accessibility by integrating vibration motors and LED feedback, which
can assist blind students in identifying notes and positions without relying solely
on vision.

2 Project specification

2.1 Project overview

The system consists of a board with a blank musical sheet, on which students
place physical musical notes. A camera positioned above the board captures the
placement of the notes, and a Raspberry Pi processes the input to identify their
position and translate it into sound, playing the corresponding melody through
a speaker, as illustrated in 1. The system offers to the music teacher - through
the web application - multiple modes of operation, including a free-play loop

Technical Report: Melody 3

mode and guided tasks based on preloaded songs', both visual and auditory.
Additional features such as LED indicators and vibration feedback aim to sup-
port visually impaired users. The usability of the project is represented in 2.

Rhythm Volume

g8 B 0P

Accesibility mode
Q

Figure 1: Melody concept

Sends commands to \
Interact—} WebPage ‘\ —> Melody Send commands to—| Accessibility Box Feedback—| Student
eedback’ \

Place not

Figure 2: Melody interactions diagram

2.1.1 Operation mode: Creation

In Creation Mode, the Melody system allows children to explore musical com-
position by placing physical note pieces freely on the board’s staff lines. As each
note is positioned, the system detects its location using the camera and inter-
prets the corresponding pitch, accidental and fempo based on its placement on
the staff and also its color. The identified notes are then played sequentially in a
continuous loop, creating a dynamic auditory feedback experience.

2.1.2 Operation mode: Hear the note

In Hear the Note Mode, the Melody system challenges students to recognize mu-
sical notes using only auditory cues. The system plays a single note through the
speaker, and the student must identify it by pitch and place the corresponding
physical note on the correct position of the staff. Once the note is placed, the

1Canon in D - Johann Pachelbel; Ode to joy - Johann S. Bach; Twinkle twinkle little star - Mozart.

Technical Report: Melody 4

system uses the camera to verify the position and color, determining whether
the selected note, accidental and tempo match the one that was played. This
mode reinforces ear training and helps develop pitch recognition skills, promot-
ing a deeper internalization of musical concepts. It also offers an inclusive and
engaging learning experience, particularly beneficial for students who rely more
heavily on auditory perception, such as those with visual impairments.

2.1.3 Operation mode: Identify the note

In Identify the Note Mode, the system is used under the guidance of the teacher,
who verbally instructs the student to place specific notes on the staff, includ-
ing the pitch, accidental and the desired tempo (such as whole, half, or quarter
notes). From that, the system works exactly like the Hear the Note mode, from
the step when the student is supposed to place the note in the correct position.

2.2 Requirements

This section outlines the set of requirements defined by the Melody project team
during the planning phase based on the resources at the team’s disposal and
the functionalities it should provide. They were categorized into functional and
non-functional types, and further grouped according to the system’s subsys-
tems: software, mechanical, and hardware. Each requirement was designed to
ensure the system meets its pedagogical, technical, and accessibility objectives.
The functional requirements (FRs) describe what the system must do, in-
cluding image recognition of musical notes, continuous playback of melodies,
and student guidance through lights and sound across different operating modes.
The non-functional requirements (NFRs) specify constraints such as develop-
ment language (Python and C), physical dimensions of components, and sys-
tem responsiveness. In addition, a set of out-of-scope (Anti-requirements) were
defined to clarify the project boundaries, ensuring a focused and feasible imple-
mentation. All requirements were evaluated for implementation risks, including
whether the feature could be removed if team members were lost, and tracked
for completion throughout the development process. During the project plan-
ning, the team had to evaluate possible risks and problems that could occur dur-
ing the development, therefore, some requirements were marked as optional®.

2.2.1 Mechanical requirements

The mechanical requirements of the Melody system define the physical charac-
teristics, layout, and components necessary for proper user interaction, struc-
tural integrity, and accessibility. These requirements include the dimensions of
the board, placement of note holes, integration of LEDs and accessibility mod-
ules, and the specification of 3D-printed components to support both visual and

2The optional requirements were marked with a *

Technical Report: Melody 5

tactile interaction with the system. The mechanical structure was planned to
ensure usability by both sighted and visually impaired users. Table 1 lists all the
initial requirements. Some of them, such as the measurements, were later mod-
ified to improve the user experience and facilitate project development.

Table 1: Mechanical Functional and Non-Functional Require-

ments
ID Description
The system must have 305 drilled holes for positioning the notes
NFR 1 .
on the musical sheet.
16 columns of holes for 4 measures with 4 beats each, 3 cm be-
NFR 1.1
tween them.
NFR 1.2 | 19lines of holes for note pitch, spaced 0.03 m apart.
FR1.3* | The system must have 1 drilled hole for the musical clef.
NFR 2 The system must have one bicolor LED (green/red) for each col-
umn (16 LEDs total).
FR 3 The system must have a board with the musical sheet on it.
The system must allow the student to place musical notes on the
FR 4 .
drilled holes.
FR5 The system must have an accessibility module for blind people.
FR5.1 The accessibility module must connect to the main board by a 4-
) wire cable.
FR5.2 The accessibility module must have a tactile feedback pin for each
) measure (4 total).
FR5.3 The accessibility module must have a tactile feedback vibrating in-
) terface.
NER 6 The board must have support to hold the webcam and light
sources.
NFR 6.1 | The support must be 0.90 m high.
NFR7 | The board must be 0.90 m wide, 0.90 m long, and 0.10 m high.
NFR 8 The system must have 3D-printed pieces for whole, half, and quar-
ter notes.
Each note must have versions for sharp, flat, and natural acciden-
NFR 8.1
tals.
NFR 9* | The system must have 3D-printed pieces for treble and bass clefs.

Continued on next page

Technical Report: Melody 6

Table 1 — continued from previous page

ID Description
NFR 10* | The system must operate reliably under standard indoor lighting.
FR11 The 3D-printed pieces must be colored according to the Notes Ta-
ble.
The system must have pieces printed in the quantities listed in the
NFR 12
Notes Table.
NFR 13 | Half and whole notes must have raised areas for blind users.
NFR 14 | Notes must not exceed 3 cm in width or length.
The accessibility module must be 0.10m in length, width, and
NFR 15 height

2.2.2 Hardware requirements

The hardware requirements of the Melody system define all the physical and
electronic components necessary for capturing input, processing data, and pro-
viding feedback to users. These requirements ensure the integration of cam-
eras, LEDs, speakers, and microcontrollers in a reliable and responsive architec-
ture. Special attention was given to local processing capabilities, user interac-
tion through buttons and audio, and tactile feedback mechanisms to support
accessibility. The hardware design also guarantees that all subsystems operate
independently of cloud services, making the system self-contained and suitable
for classroom environments. Additionally, the hardware-related requirements
are detailed in Table 2.

Table 2: Hardware Functional and Non-Functional Require-

ments
ID Description
NFR 1 The system must have a webcam for capturing images.
NFR2 | The system must have light sources for consistent image capture.
NFR 3 The system must have a speaker to output audio with 2.5W.
The system must allow control of volume (as a percentage of total
FR4 power), tempo (60, 90, or 120 BPM), and play/pause using push
buttons.
The system must perform all image processing locally on the Rasp-
NFR 5 .
berry Pi4 B.

Continued on next page

Technical Report: Melody 7

Table 2 — continued from previous page

ID Description

The system must have one 5V 2 A power supply for the Raspberry

NFR 6 Pi and a second identical power supply for the LEDs, motors, and
ESP32.

NER 7 The ESP32 microcontroller must run firmware developed in C us-
ing the FreeRTOS framework.

NFR 8 The ESP32 must communicate with the Raspberry Pi via UART.
The ESP32 must control four SG90 servo motors that actuate the

NFR9 tactile feedback pins on the accessibility module (each pin with
0.10 m dimensions).

NER 10 The ESP32 must control the vibration motor that actuates the vi-
brating interface.

NFR 11 The ESP32 must control the LEDs via two 1-to-16 74154 demulti-

plexers.

2.2.3 Software requirements

The software requirements define the functional behavior and technical imple-
mentation constraints of the Melody system’s logic and interface. These require-
ments cover user interaction through a web-based interface, control over system
modes and settings, note recognition through image processing, and the execu-
tion of each learning mode: Creation, Identify, and Hear the Note. Additionally,
non-functional requirements specify implementation details such as program-
ming languages, frameworks, and deployment platforms. Together, these re-
quirements guide the development of a reliable, responsive, and user-friendly
learning tool that supports music education in both visual and auditory con-
texts. All requirements related to the software side of the project are listed in

Table 3.
Table 3: Software Functional and Non-Functional Requirements
ID Description
FR1 The system must have a web interface for the teacher.

NFR 1.1 | The web interface must have a home page.
NFR 1.2 | The system must start in stand-by mode.

FR1.3 | The teacher can choose the mode from the home page.
NFR 1.4 | The system must have a dedicated page for each mode.

Continued on next page

Technical Report: Melody 8

Table 3 — continued from previous page

ID Description
The teacher must be able to control volume (percentage),
FR1.5 . a1
play/pause, and enable/disable accessibility mode.
The Creation mode page must allow tempo control at 60, 90, or 120
FR 1.6
BPM.
FR 1.7 The Identify and Hear the Note pages must ask for a melody to be
) played.
The web interface must be implemented using JavaScript, HTML,
NFR 1.8
and CSS.
FR2 The system must use image recognition to identify and classify
musical notes.
FR 2.1 The system must capture images of the board using the webcam.
FR2.2 The system must classify note duration based on color into whole,
) half, or quarter notes.
FR2.3 The system must classify pitch based on vertical position across 19
) values.
FR 2.4 The system must classify note position in measure based on hori-
) zontal placement across 16 values.
The system must classify the clef (treble or bass) placed on the
FR 2.5
board.
FR 3* The Creation mode must continuously play the melody displayed
on the board in a loop.
FR3.1 In Creation mode, the system must light a green LED below the
) column of the note currently being played.
FR4 The Identify and Hear the Note modes must guide the student in
building the melody.
These modes must light a red LED to indicate where the student
NFR 4.1
should place the note.
FR4.2 The Hear the Note mode must replay the expected note every 3
) seconds.
The Identify mode must display the note name in the web interface
FR4.3 .
for the teacher to dictate.
NFR 4.4 | The red LED must remain on if an incorrect note is placed.

Continued on next page

Technical Report: Melody 9

Table 3 — continued from previous page

ID Description
NFR 4.5 The red LED must turn green and move to the next note position if
) the placement is correct.
FR 4.6 | After all correct placements, the melody must loop continuously.

The Identify and Hear the Note modes must each have 2 preloaded

NFR 4.7 .
melodies.

NFR 5* The software must be developed in Python and run on a Raspberry
Pi 4.

NER 6* The Raspberry Pi 4 must communicate with external devices

(computer or cellphone) via Wi-Fi.

2.2.4 Outof scope

To ensure a focused and feasible development process, the Melody project de-
fined a clear set of out-of-scope requirements. These are features or function-
alities that, while potentially relevant in broader applications, were deliberately
excluded from the current version of the system due to time, complexity, or edu-
cational scope limitations. Identifying these boundaries helps to prevent scope
creep and sets clear expectations for users and stakeholders regarding what the
system will and will not deliver.

ID Description

Antil The system will not teach complete music theory, but will act as a sup-
port tool.

Anti 2 The system is not intended for children to use alone.

Anti 3 The system will not export sheet music or generate real-time scores.

Anti 4 The system will not include internet or cloud-based services.

Anti5 The system will not support multiplayer or simultaneous multi-user in-
teraction.

Anti 6 The system will not have a display.

Anti 7 The system will not play chords.

Table 4: Out of Scope Requirements

Technical Report: Melody 10

3 Project development

Melody (Product top level) Separate components

Accessibility Box |
Sends feedback m Music notes that are used on the
— > E2 main table
D
Components inside or attached to the main table

Illuminates the board >
N, y
g
Sends photo to identify
E ¢ Ply the notes w Control the ESP-32 ﬁ ﬁ Il
£ 4 Control the v,
servo motors

Selects which LED will light
Control: Volume, tempo, J/ wh will light up
play and stop melody

I/untm\ the LEDs

WebPage

Exchange information

Figure 3: Melody development overview

3.1 Mechanical development

The mechanical structure of the Melody project was designed to be both func-
tional and robust, providing a stable platform for all electronic components while
ensuring an intuitive user experience. The design is centered around two main
physical assemblies: the main board and an accessibility module.

The primary structure is a custom-designed main board with overall dimen-
sions of 800 mm by 700 mm and a height of 68 mm, fabricated from a 6 mm
thick sheet of Medium-Density Fiberboard (MDF), chosen for its durability and
ease of machining. The board’s dimensions and features were precisely defined
in a software model before being cut using a laser cutter to ensure accuracy. This
board serves as the interactive surface where users place physical note markers.
It includes laser-cut holes positioned to represent the musical staff, along with
openings for the system’s physical interface, including six user-input buttons, an
emergency reset button, and an access point for organized cable management.
An integrated support structure holds the overhead camera at a variable height
of 750 mm (+ 20 mm).

The system’s physical note markers, each measuring 30 mm x 96 mm, were
3D-printed with specific tactile features to make them distinguishable for visu-
ally impaired users. The differentiation is based on how accidentals (sharps and
flats) are represented on notes of different durations. Quarter notes, which are
represented as solid circles in standard notation, were printed as solid pieces; for

Technical Report: Melody 11

these, the sharp (f) and flat (b) symbols are indented into the surface (negative
relief). Conversely, half and whole notes, which are hollow in standard notation,
were printed with a hole through their center; for these notes, the accidental
symbols are raised from the surface (positive relief). This design allows a user
to first identify the note’s duration by feeling if it is solid or hollow, and then
determine its accidental by feeling for either a raised or an indented symbol.

In addition to the main board, the project includes a separate accessibility
module designed to provide tactile feedback for visually impaired users. This
module consists of a 100 mm x 100 mm x 110 mm MDF box with a wall thickness
of 3 mm. The box, which was a pre-fabricated and glued unit, was subsequently
modified using a laser cutter to create custom fittings for its components. These
components include four servo motors and a vibration motor, which work in
tandem to translate the system’s visual LED feedback into tactile sensations,
making the learning experience accessible to all users.

3.2 Hardware development

The system’s hardware architecture is centered around a Raspberry Pi 4, which
performs the main processing, and an ESP32 microcontroller, which manages
the accessibility features. User interaction and feedback are handled through
a webcam for note detection, a speaker for audio playback, and a matrix of 16
bicolor LEDs controlled by two demultiplexers for visual cues. The accessibility
module, driven by the ESP32, consists of four servo motors for tactile pin feed-
back and a vibration motor. A UART serial connection enables communication
between the Raspberry Pi and the ESP32. The entire system is powered by three
independent 5V 2A power supplies to ensure stable operation for both the main
board and peripheral components.

Technical Report

: Melody

12

Lens

s
P

sy
Sv_omERs

RSPy

HELOVEI b it o /uaar 0

GRIOLS/UMTBXD

P
o i
)

E: prens
o/ Sasars

|

1850 3ca/6piaac|
18.5E12¢0/aPK01

ais

o
:+} spac1/ePiaa|
ik amtEL Seiscs/anca o2
/—ﬂﬂ'"“" B/ PLM_ELK/PWME .
£ cPioLa/sei SO/ PorLES weoua/ePga L o
8l cpia20/SP11 MOS |/ PEMDIN/PENL CPCLE1 /EPIaS|
4 21/ sSCLK/PCN_D0UT CPCLR2/GPINE|

WELDPI_DX 3
WELDOY o4

r
Conn 01108 P10

]
&

BL7

BLOTHERS 3 Conn. 0101 P

Acezssiiey
Vodue

[
cow0E7 R

Somers

Interface Buttons

e

b I.U Tu
o e

15 4

‘t:.

I

. S e

1T s

[

I

i

Tl i e
L

Size; A% [Date:

T Revi 3

KiCad E0A 502

Figure 4: Melody hardware

T 471

-
LM11177T-3.3
|5¥_OTHER:
——
e SVLOTHERS i
A 3 MELEDY_TX
Cana_03x05_Pia 4 MELOBY_RX o
: 1
e
Vi
ﬂ ESPIZ_DewkB VA_DOIT

Figure 5:

BN

% S

3.3 Firmware development

EV_QTHERS
STAVOL

Ko
masE simvo2 || ¢

STV 3

SERVD 4

Accessibility box hardware

The project uses a dual-firmware approach to distribute tasks efficiently. The
primary firmware is a Python application running on the Raspberry Pi, which
orchestrates the entire system. It handles high-level tasks like image processing,
sound synthesis, and the web server for the user interface.

A dedicated hardware module within this application manages all low-level
interactions with the Raspberry Pi’s GPIO pins. It directly controls the LED ma-

Technical Report: Melody 13

trix for visual feedback, offering functions to select specific columns and set
their colors. This module also configures interrupt-driven event detection for
the physical buttons (controlling volume, tempo, playback, and reset). When a
button is pressed, a hardware interrupt triggers a callback function that imme-
diately updates the system’s state.

Additionally, the module manages the serial communication protocol used
to transmit commands to the secondary firmware—a C program on the ESP32.
This secondary firmware is dedicated to the accessibility module; it operates by
listening for simple commands sent from the Raspberry Pi and executes real-
time control of the servo and vibration motors.

3.4 Software development

The software architecture of Melody is designed around a client-server model,
consisting of a Python backend that handles all core logic and a web-based fron-
tend that serves as the user interface. This separation allows for a modular and
scalable system. The backend is built using a modern web framework, which
manages an asynchronous web server and communicates with the frontend in
real-time via WebSockets.

3.4.1 System Architecture Overview

The software is divided into two main parts: the backend and the frontend.

* Backend: A Python application responsible for image processing, note de-
tection, state management, sound generation, and hardware control. It
runs on a Raspberry Pi and exposes an API for the frontend.

* Frontend: A web interface built with standard HTML, CSS, and JavaScript
that runs in a browser. It allows users to interact with the system, select
modes, and control parameters like volume and tempo.

Communication between these two parts is handled by a WebSocket connec-
tion, enabling the backend to push state updates to the frontend, ensuring the
Ul always reflects the current state of the application.

3.4.2 Backend Implementation

The backend is the core of the Melody project, containing all the logic for the
system’s functionality. It is organized into several key modules. In Figure 6, it is
possible to see the state chart representing the overview of the system.

Web Server and API The backend web server, built using the FastAPI frame-
work [4] and run by a Uvicorn ASGI server [3], handles two primary responsibili-
ties: serving the static HTML, CSS, and JavaScript files for the user interface and

Technical Report: Melody 14

Melody

Setup Completed

Server control Mode manager Note Detection

set_page(creation’) set_pagef{identity)

Listening for
Client
Messages

Capturing and

Idie Made Analyzing Frame

set_page(home) set_page(home)

set_page(home’)

set_pageChear)
Creation Hear the Identify
maode note made mode

Notes Detection
Complete Delay Ends

Receives WebSacket

message State Broadcasted

Updating
Detected Notes
State

Processing
Action &
Broadcasting
State

Shutting down the system

O

Figure 6: System’s Statechart

managing communication. Communication is achieved via a WebSocket end-
point, which establishes a persistent, bidirectional channel between the server
and the client. The API operates on a simple JSON-based messaging protocol.
When a user interacts with the frontend (e.g., clicks a button), a message is sent
to the server. The server receives this message, executes the corresponding func-
tion to update the system’s central state, and then broadcasts the new state to all
connected clients. This mechanism ensures that the Ul always remains syn-
chronized with the application’s internal state.

State and Session Management It ensures that all components — from the
user interface to the hardware LEDs — are synchronized and operate on the
same information.

The core of this system is a centralized data structure that holds every im-
portant variable representing the application’s current status. Whenever any of
these values change, whether initiated by the user pressing a button on the web
interface or a hardware button on the physical device, the central state is up-
dated. Immediately after the update, this new state is broadcast over the Web-
Socket connection to all connected clients. The frontend interface listens for
these broadcasts and instantly updates its components — for example, chang-
ing volume value on the Ul or showing a new note — ensuring the teacher always
sees a perfect reflection of the system’s internal state.

Technical Report: Melody 15

Note Detection The note detection process is one of the most critical compo-
nents of the software. To ensure the application remains responsive, this process
runs in a dedicated thread. The detection pipeline involves several stages:

* Image Calibration: After startup, the camera feed is calibrated. This rou-
tine algorithmically detects the four corner holes on the board and applies
a perspective warp transformation. This correction accounts for the cam-
era’s angle, producing a consistent, top-down view of the musical staff for
reliable analysis.

* Color Analysis: The warped image is converted to the HSV color space to
make color detection more robust. A set of color masks is then applied
to isolate pixels corresponding to each of the colored note markers. To
improve accuracy, morphological operations like dilation and erosion are
used to reduce noise and fill small gaps in the detected color regions.

* Note Parsing: After identifying the predominant color in each grid posi-
tion on the board, a parsing module translates this visual information into
musical notation. It uses a predefined map where a combination of a color
and its vertical position corresponds to a specific note pitch (e.g., "C4",
"F5#") and duration, effectively converting the physical arrangement of
notes into a digital melody.

Sound Generation The sound playing functionality programmatically synthe-
sizes audio waveforms for each musical note based on its fundamental frequency
and higher order harmonics. To create a more natural and pleasant tone, an
ADSR (Attack, Decay, Sustain, Release) envelope is applied to the synthesized
waveform. The final audio is then streamed to the system’s speakers using a
sound-playing library.

Application Logic and Modes The application’s behavior is organized into a

state machine, where each state is a distinct operational mode. A master con-

troller, running in the main program loop, continuously checks the page vari-

able from the central state to determine which mode should be active. Based

on this variable, it executes the logic contained within the corresponding mode

module. This design makes the system’s logic modular and easy to manage.
Here is a more detailed breakdown of each mode’s logic:

IdleMode Thisis the default mode when the application is on the home screen.
It is a passive state where the system is simply waiting for user input to navigate
to one of the other functional modes. No active processing, like note detection
or sound playback, occurs.

Technical Report: Melody 16

Creation Mode This mode allows students to freely compose music by placing
physical notes on the board. The system continuously detects the note sequence
and, when in the playing state, it plays each note with synchronized audio and
LED indicators. If accessibility is enabled, the ESP32 receives the corresponding
command. Playback follows the configured tempo and updates as users modify
the notes.

The flowchart of the creation mode is shown in Figure 7.

Open Webpage of
Creation Mode

Creation Mode
execution

System identifies the
configurations set by
the user

"Play” button

Waiting for user
inputs

Event: User
press the "Stop
button

Software get the notes detected in
the board

o

Software plays the sounds
corresponding to the notes on the
board

N

The system sends signals to the
firmware, which sets up the LED
‘— sequence to light up and waits
asynchronously according to the
respective BPM.

1

Figure 7: Creation Mode Flowchart

Identify the Note Mode This interactive game mode helps students practice
note recognition. The system loads a predefined melody and displays each tar-
get note sequentially. It waits for the user to place a matching note on the board,
using the detection module to evaluate input. Feedback is given through green
or red LEDs, and, if accessibility is enabled, through membrane vibration. Upon
a correct placement, the system advances to the next note in the melody.

The flowchart of the identify the note mode is shown in Figure 8.

Technical Report: Melody

17

Event: User
press the
"Stop button”

Identify the Note
mode execution

Waiting for user
inputs

Open Webpage of
“Identify the Note"
Mode

User clicks the "Play” button

System identifies
the melody selected
by the user

>

System initializes the
first note of the
sequence

ISystem shows the note

on the web interface

Figure 8: Identify the Note Mode Flowchart

System play the
entire melody Yes

|

System gets the notes
detected on the board

Is the.
sequence
over?

System lights the led
corresponding with the
color red and watts 3
seconds

System goes to next ||

note

Hear the Note Mode This ear-training game challenges students to recognize
notes by sound alone. The system plays each note from a predefined melody
using the sound generation module, without visual cues. The student must lis-
ten and place the corresponding physical note on the board. The system detects
and evaluates the answer, providing feedback via LEDs and vibration (if acces-
sibility is enabled). After a correct response, it advances to the next note in the

sequence.

The flowchart of the hear the note mode is shown in Figure 9.

Event: User
press the
"Stop button"

Event: User
press the play
note button

—>{ sound of the note

System plays the

on the speakers

Waiting for user
inputs

Hear the Note
mode execution

Open Webpage of
"Hear the Note”
Mode

System identifies
the melody selected
by the user

>

System initializes the
first note of the
sequence

|System shows the note,
on the web interface

User clicks the "Play” button

System play the

l

System gets the notes
detected on the board

I

System plays the
sound of the correct
note on the speakers

Is the note correct?

System lighis the ied
corresponding with the
color red and waits 3
seconds

System goes tonext |_|

entire melody

Figure 9: Hear the Note Mode Flowchart

note

Technical Report: Melody 18

3.4.3 Frontend Implementation

The frontend provides a simple and intuitive user interface for controlling the
system. It is designed to be responsive and run in a web browser, allowing for
easy access from various devices connected to the same network.

Communication Bridge At the core of the frontend is a JavaScript module that
acts as a communication bridge. It establishes and maintains a WebSocket con-
nection to the backend, enabling two-way communication. This bridge is re-
sponsible for two key processes:

* Home Page: * Hear the Note Mode:
— Navigation links to the three in- — Adropdown menu for melody se-
teractive modes. lection.
- Atoggle switch for the accessibil- - Adisplay area for the target note.
ity mode. — A control to play the sound of the
— A help button to instruct the current note.
teacher. - Volume adjustment buttons.
¢ Creation Mode: - A navigation link to return to the
- Controls to start and stop play- home page.
back. ¢ Identify the Note Mode:
— Buttons for volume and tempo — Adropdown menu for melody se-
adjustment. lection.
- A navigation link to return to the - A display area for the target note.
home page. — Volume adjustment buttons.
- A navigation link to return to the
home page.
4 Results

4.1 Requirements completion

The Melody system successfully met all of the functional and non-functional re-
quirements defined during the planning phase. Throughout development, the
team prioritized user interaction, accessibility, and robust integration between
hardware and software components. All three operation modes—Creation, Iden-
tify the Note, and Hear the Note—were fully implemented and validated in real-
world testing scenarios.

In the software domain, the real-time communication between the frontend
and backend through WebSockets ensured a fluid user experience. The back-
end effectively handled note recognition, sound generation, and system state
management, while the frontend accurately reflected system status and allowed
intuitive control of the music teacher over all modes and parameters.

On the hardware side, the LED matrix, buttons, and audio playback system
responded as expected, with low-latency input recognition. Additionally, the
accessibility module successfully converted visual cues into tactile feedback us-

Technical Report: Melody 19

Figure 10: Project assembled

ing servo motors and a vibration interface, enabling visually impaired users to
interact with the system independently.

Mechanically, the board layout, drilled holes, and support for 3D-printed
note pieces were precisely aligned with the musical staff, enabling reliable note
detection and positioning. Both sighted and blind students were able to use
the system in a classroom setting, achieving the pedagogical objectives of the
project.

4.2 Budget

The initial budget estimation for the Melody project ranged from R$ 910,00 to R$
1.195,00, considering all planned components, including electronics, mechani-
cal parts, and materials for prototyping. The estimate included spare parts for
critical components such as servo motors, ESP32, and the Raspberry Pi, aiming
to ensure hardware redundancy and reduce project risks.

By the end of development, the total amount spent was R$ 1.133,11, which
remained within the estimated range. This indicates effective financial planning
and resource management by the team. The budget can be found in more details
at the blog [5].

5 Conclusion

The Melody project successfully achieved its main objective of developing an
educational tool to support music teachers in introducing music theory to chil-
dren in an accessible and engaging way. Through the integration of hardware,
software, and mechanical design, the system provides a playful and interac-
tive experience that helps students understand the relationship between mu-
sical notation and sound. The inclusion of a dedicated accessibility module also

Technical Report: Melody 20

ensures that visually impaired students can participate equally in the learning
process, reinforcing the inclusive nature of the solution.

From a technical standpoint, the project demonstrated robust implemen-
tation of real-time image recognition, audio synthesis, and responsive user in-
terface design. The three operational modes —Free Play, Identify the Note, and
Hear the Note — were developed and validated to meet pedagogical goals, al-
lowing both guided and exploratory learning. The system’s architecture, built
around a Raspberry Pi with a Python backend and web-based frontend, offers
a scalable and maintainable platform for future enhancements. Moreover, the
team remained within the projected budget, with a final cost of R$ 1.133,11,
below the upper limit of the estimated range. With all of the planned require-
ments fully implemented, Melody stands as a complete and viable prototype
that could be extended into a classroom-ready product. Future iterations may
include chord support, faster image recognition, better speakers or a more com-
pact physical structure. As it stands, the system already presents meaningful
pedagogical impact and aligns well with the goals of accessible and modern ed-
ucation.

References

[1] American Psychological Association. Excessive screen time linked to behav-
ior problems in children. Accessed: 2025-06-25. June 2025. URL: https :
//www . apa . org/news /press/releases/2025/06/screen- time -
problems-children.

[2] Association of Texas Professional Educators. Generation Alpha: Educating
the Most Digital Generation Yet. Accessed: 2025-06-25. 2024. URL: https:
//www .atpe.org/News-Media/Magazine/ATPE-News - Summer - 2024/
Generation-Alpha.

[3] Uvicorn Project. Uvicorn: The lightning-fast ASGI server implementation.
Accessed: 2025-06-25. 2025. URL: https://www.uvicorn.org/.

[4] Sebastidn Ramirez. FastAPI: The modern web framework for building APIs
with Python 3.7+. Accessed: 2025-06-25. 2025. URL: https : //fastapi .
tiangolo.com/.

[5] Augusto Rosa et al. Melody - Integration Workshop 3. https://github.
com/IshikawaRasoto/integration-workshop-3. Accessed: 2025-06-25.
2025.

https://www.apa.org/news/press/releases/2025/06/screen-time-problems-children
https://www.apa.org/news/press/releases/2025/06/screen-time-problems-children
https://www.apa.org/news/press/releases/2025/06/screen-time-problems-children
https://www.atpe.org/News-Media/Magazine/ATPE-News-Summer-2024/Generation-Alpha
https://www.atpe.org/News-Media/Magazine/ATPE-News-Summer-2024/Generation-Alpha
https://www.atpe.org/News-Media/Magazine/ATPE-News-Summer-2024/Generation-Alpha
https://www.uvicorn.org/
https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/
https://github.com/IshikawaRasoto/integration-workshop-3
https://github.com/IshikawaRasoto/integration-workshop-3

	Introduction
	Project specification
	Project overview
	Operation mode: Creation
	Operation mode: Hear the note
	Operation mode: Identify the note

	Requirements
	Mechanical requirements
	Hardware requirements
	Software requirements
	Out of scope

	Project development
	Mechanical development
	Hardware development
	Firmware development
	Software development
	System Architecture Overview
	Backend Implementation
	Frontend Implementation

	Results
	Requirements completion
	Budget

	Conclusion

