
Federal University of Technology - Paraná - Brasil – UTFPR

Academic Departament of Electronics – DAELN

Academic Departament of Informatics – DAINF

Computer Engineering
Integration Workshop 3 (EEX23) – S71 – 2020/2

Technical Report
FollowYolo

Cesar Batista – cesar_batt@hotmail.com

Felipe Avelino P Rêgo – avelino.felipe@gmail.com

Lucas Rech – coradin.rech@gmail.com

Matheus B. D. da Costa – bigarellimatheus@gmail.com

Victor H. B. da Silva – belinello333@hotmail.com

April, 2021

Abstract

This document reports the development of FollowYolo, the project of a
simulated semi-autonomous shopping cart that communicates with a user
through an Android app, to make the shopping experience better. To do
this, the user can rent the robot in the market, using fictional money in the
app. The user has some options of what he or she can do with the robot,
like sending it to a place of the market. To start a rent the user will scan
a QR Code and use a vest with a printed Augmented Reality Tag (AR Tag)
that the robot will use to follow the user. The communication between the
app and the robot is made by a server. The app will communicate with the
server, giving all the needed information to the server identify which robot
the user wants to rent and the information the robot needs to identify the
user. Due to the pandemic, all of the physical components were simulated
on a robotic simulation environment, adjusting the project and scope to
accommodate to those limitations.

1 Introduction

Everyone needs to go to the market some day, it’s inevitable. The task of carrying
a lot of products with you in a hand basket throughout the market can be very
energy consuming and there isn’t any technology applied to this problem yet.

FollowYolo is a robot capable of carrying the goods while following a person in-
directly with the help of a tag attached to a person’s clothes while avoiding the
obstacles that it faces. This project’s motivation came primarily from the diffi-
culties that elder or disabled people have in carrying market baskets. There are
also the ones that just do not like to carry them around. The ultimate goal is to
enhance the shopping experience.

1

Technical Report: FollowYolo 2

The main task at hand is to simulate a robot that can follow a person within
a market, communicating with a costumer using an Android app, through a
server. The user will be wearing a vest with a printed AR Tag1. The robot will
have a camera that it will use to capture the user’s AR Tag and get information
about the user’s distance from the robot.

The pandemic influenced directly on some of the project development choices.
This was mainly the motivation to do this project using simulations. It was the
best way to keep our team productive and minimizing the impacts and risks,
including the risk of someone getting infected with the COVID-19 virus.

1.1 Requirements

To accomplish such goals, a list of functional and non-functional requirements
was compiled. Some of the main functional requirements are presented in Ta-
bles 1,2, and 3. However, some observations are necessary: the app doesn’t make
any real monetary transactions and the robot will not follow the user if he isn’t
using the vest with the ARTag.

1.2 Project overview

Figure 1: System Overview

Now that all the requirements are listed, a high-level abstract solution can be
drawn. This is the intended purpose of Figures 1 and 2.

The initial solution design consists of three main components: the robot itself,
a cloud server and an android app. Each of these have a specific purpose.

1AR Tag stands for Augmented Reality Tag. It is a fiducial marker system used in augmented
reality applications. It was chosen for this project due to the fact that we could extract distance
and orientation information about the tag relative to the robot relatively easy.

Technical Report: FollowYolo 3

Figure 2: Sub components of the system

First, the robot will be responsible to carry the user’s goods and follow him/her
around the market. Then, the app will be an the interface between the user
and the robot. Finally, the cloud server will manage all communications, data
storage and back-end operations.

The robot has a set of functionalities. Those include AR Tag following (presented
in more detail in section 2.1, obstacle avoidance and automatic return. An AR
Tag is a fiducial marker system to support augmented reality. They can be used
to facilitate the appearance of virtual objects, games, and animations within the
real world. In this case, it was used not to make an object appear in a screen,
but rather measure it’s distance and orientation relative to the camera. The ob-
stacle avoidance is the feature of deviating from objects while pursing the goal,
which is the AR Tag. The automatic return is a functionality, in which the robot
is commanded to return to it’s initial position after the rent is finished.

As stated in the last phrase, the robot can be rented. This will happen in the app.
One of the main functionalities of the app is to provide means to the user to rent
the robot, finalize it (the rent), sign up and login, deposit some cash to rent the
robot and notify the market administrator in case of any problems.

The cloud server is an intermediary for the two components mentioned before.
It will take incoming requests from the app, such as credentials for the sign up
and login functionalities, and store them in the database. If the robot needs any
information, it will make a request on the server to get such information.

2 Technologies

The reader can see in Figures 1 and 2 that many technologies were used to design
the solution. Here, all of them are presented.

Technical Report: FollowYolo 4

Robot requirements
Number Description
01 The robot must move in the market environment
02 The robot must be able to follow the user.
03 The robot must be able to avoid obstacles.
04 The robot must go to predetermined locations.
05 The robot must go back to its bay when the rent is over.
06 The robot must be able to scan a environment.

Table 1: Robot (simulation) requirements.

Server requirements
Number Description
01 The server must communicate with the app.
01 The server must communicate with the robot.
03 The server must persist user data on a data base.
04 The server must persist robot data on a data base.
05 The server must handle rents.
06 The server must persist map data.

Table 2: Server requirements.

App requirements
Number Description
01 The app must register a user.
02 The app must authenticate a user.
03 The app must allow the user to add credits.
04 The app must be able to rent robots.

Table 3: App requirements.

2.1 Robot

To make a 3D model of the designed robot, the Fusion 360 2 software from Au-
toDesk was used.

To make a hardware design, there are plenty of options to choose from, but the
one used was Eagle3, also from AutoDesk, a software that assists the design of
schematics and PCB board, routing and much more.

First of all, the Diagrams.net4 online diagram software was used to draw the ini-
tial designs and solution’s architecture.

2https://www.autodesk.com/products/fusion-360/overview
3https://www.autodesk.com/products/eagle/overview
4Formerly Draw.io

https://www.autodesk.com/products/fusion-360/overview
https://www.autodesk.com/products/eagle/overview

Technical Report: FollowYolo 5

ROS (Robot Operating System)5 is a robotics software development framework.
It is world-wide used for complex robotics applications. That is the main reason
why this framework was used in this project.

A package in ROS in a collection of code with a specific purpose. Some that were
used throughout the entire project were the Turtlebot packages. Turtlebot6 is a
well known robot system in the robotics community, which comes with a variety
of components, such as sensors, motors, etc.

Another ROS package that plays a big role in this project is the ar-track-alvar7.
This is a package which allows the user (programmer, roboticist, etc) to easily get
the position of a tag in the environment. The key thing is that the tag is an AR
Tag (Augmented Reality Tag). The package constantly looks for these markers in
a camera feed and provides the system with specific position and orientation of
this tag.

Finally, there is a development stack, the ROS navigation stack, that helped the
team to develop the navigation algorithms. The main package is the move_base,
it receives odometry data, LIDAR data, a goal and a map of the environment.

2.2 Simulation

Gazebo 8 is a simulation software widely used for robotics systems simulation.
In fact, a standard Gazebo installation already comes with the installation of the
ROS framework. The Gazebo software works side by side with ROS and outputs
an accurate simulation of a real-world robotics application, including errors in
sensor measures, physics, lighting conditions and much more.

Blender 9 is a free and open source 3D creation suite. This tool allowed the mak-
ing of the 3D models required by the simulation.

2.3 Server

The server is the key communications and data storage handler.

For managing all communications, the NodeJS10 runtime environment was used.
It is a JavaScript based environment and framework that allows JavaScript to be
run in the back-end of an application, allowing the developer to program server-
side codes using JavaScript.

5https://www.ros.org/
6https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
7http://wiki.ros.org/ar_track_alvar
8http://gazebosim.org/
9https://www.blender.org/

10https://nodejs.org

https://www.ros.org/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
http://wiki.ros.org/ar_track_alvar
http://gazebosim.org/
https://www.blender.org/
https://nodejs.org

Technical Report: FollowYolo 6

Express is a framework for NodeJS which allows responding to HTTP Requests
very easily. JSON11 stands for JavaScript Object Notation and is a format widely
used in data transfer at the application level using HTTP.

MongoDB12 is a document oriented database software. For data storage, Mon-
goDB utilizes a JSON-based format with schemas. MongoDB was chosen for the
database due to its flexibility, code-native access and ease to scale horizontally.
This means that it can adapt to the number of incoming connections fairly eas-
ily.

MongoDB Atlas13 is a fully-managed cloud database developed by the same peo-
ple that build MongoDB. Atlas handles all the complexity of deploying, manag-
ing, and healing the deployments on the cloud.

Heroku14 is a cloud platform used do deploy back-end applications like website
hosting, production testing or application scalability.

2.4 App

Dart15 is a programming language developed by Google, object-oriented, garbage-
collected language with C-style syntax, with optional typing, among other things.
Dart is the language used by the Flutter framework.

Flutter16 is Google’s UI toolkit for building natively compiled applications for
mobile, web, and desktop from a single code base. It was chosen to develop
the app for it’s simplicity to work with, since a starting programmer can get an
application up and running in a matter of a few minutes, excluding the time of
installation.

3 Development

3.1 Robot

The main goal of the robot was to be able to follow an AR Tag attached to a per-
son’s clothes while avoiding obstacles. The robot itself was designed after Turtle-
bot 3 Waffle Pi.

11https://www.json.org/json-en.html
12https://www.mongodb.com/
13https://docs.atlas.mongodb.com/
14https://www.heroku.com/
15https://dart.dev/
16https://flutter.dev/

https://www.json.org/json-en.html
https://www.mongodb.com/
https://docs.atlas.mongodb.com/
https://www.heroku.com/
https://dart.dev/
https://flutter.dev/

Technical Report: FollowYolo 7

3.1.1 Turtlebot 3 Waffle Pi

The turtlebot suite was chosen for this project, because it is one of the most
famous robotics platform in Research and Development. Besides, it’s firmware,
hardware and software are open-source, which stimulates it’s modification. It
was developed having the goal to be cost-accessible, to be small and to have
precise sensors. This was decided to be a minimum requirement of the robot
platform for this project’s development.

About the sensors, it is worth mentioning the LIDAR (Light Detection And Rang-
ing). It is a technology that consists in detecting physical barriers and it’s dis-
tance from the sensor in an environment using light.

3.1.2 Mechanical design

The main goal of the mechanical design of the robot was to be as similar as pos-
sible to the Turtlebot 3 Waffle Pi robot, so that the simulation can be an accurate
representation of how the real robot would behave.

It can be seen in Figures 3a that the designed robot is fairly similar to the Turtle-
bot 3 Waffle Pi robot, displayed in Figure 3b.

(a) View of the 3D model (b) Turtlebot 3 Waffle Pi

Figure 3: Comparison 3D model and Real Waffle Pi

The design was made to be 30 cm deep and 40 cm wide. That’s because the
robot should be able to carry some goods in it’s basket. The basket can be seen
in Figure 3a. The wheel composition is the same as the Turtlebot’s, being two
moving wheels, with motors attached, and a dummy one, without any motor
attached, to stabilize the robot. Remembering that the mechanical design was
not built due to the pandemics restrictions.

Technical Report: FollowYolo 8

3.1.3 Hardware project

There were many things about the hardware specification that limited the de-
sign in a certain way. First of all, the current needed to supply the motors is
far greater than the one needed to supply the logic circuitry. So the first thing
to consider was to include two batteries with distinct purposes. One of them
was included in the project to supply the motors, which require a greater energy
by themselves. The other battery was included to supply the microcontrollers,
the logic components of the modules and the sensors. Figure 4 presents the
overview of the design.

Figure 4: Overview hardware design

The design didn’t include any complex electronics design. The first part was the
power supply system with the respective connectors for the "power section",
meaning the motors, and the "logic section", meaning the microcontrollers and
sensors. The second part was the headers to connect all of the components in a
single PCB. The reader can see this explanation in Figure 5a.

(a) Schematics of the designed circuit
(b) PCB of the designed circuit

Figure 5: Design circuit

Technical Report: FollowYolo 9

A quick explanation of the designed circuit’s components. The 7808 IC is an 8V
DC voltage regulator, as is the LM2596T IC. XT60’s are battery connectors. The
arduino barrel is the input voltage for the arduino board.

Finally, the corresponding PCB design is as displayed in Figure 5b. Remember-
ing that the hardware design was not built due to the pandemics restrictions.

3.1.4 Simulation

. The simulation contains 4 main components:

• The market

• Robots

• People

• Obstacles

The market was made using Blender. Figure 6a shows the top view of the market
model inside the Gazebo simulation.

(a) Top view of the market model
(b) Top view of complete simulation
environment

(c) FollowYolo model (d) Person model

Figure 6: Simulations Models

The robot models were based on the Turtlebot 3 Waffle Pi, which are available
for free. A basket was added to the model to simulate it’s real use. For a better
visualization, 3 robots were simulated, though only one is actually used. This

Technical Report: FollowYolo 10

means that only one is actually being rented. Figure 6c shows the robot model
on a simulated scene.

The people were also modeled using Blender and the AR Tag on their back was
modeled separately and combined afterwards.

One person represents the user of the system, another is a static obstacle, sim-
ulating a person standing still looking at a shelf, and the third one is a dynamic
obstacle, simulating another person walking around the environment. These
3 people can be better seen in Figure 6b. Figure 6d is an example of a person
model as shown in the simulation.

The fixed obstacles were modeled as 2 boxes. One of them is 100x100x100 cen-
timeters and the other is 15x15x15 centimeters. The complete simulation envi-
ronment is depicted in Figure 6b.

3.1.5 Communication with the cloud server

To receive and send information to the cloud server a client was made to run on
the robot. This client main responsibilities are:

• Receive messages from the server to start the robot when rented via app

• Receive messages from the server to finish a rent

• Send messages to the server when lost

• Receive messages from the server with coordinates to go to when lost

• Send messages to the server with the market map

• Receive messages from the server with the market map

This client was made using the programming language Javascript and NodeJS as
the JS runtime that allows Javascript to run on the Back-end. Figure 7 represents
the general flow of execution of the robot client.

3.2 Server

NodeJS was chosen as the framework to develop the cloud server using the li-
brary Express to build a REST (Representational State Transfer) API, so the com-
munication between the app and the robot and the database could be estab-
lished.

Technical Report: FollowYolo 11

Figure 7: Robot client flowchart

Figure 8: Entity Relationship Diagram.

Technical Report: FollowYolo 12

3.2.1 Database

For the Database the NoSQL MongoDB is used. Figure 8 shows the Entity Rela-
tionship Diagram of the database.

The "Users" Table, holds all Users and Admin User information, which relates
with the "Robots" table, where a user can rent a robot.

The "Admin_Calls" Table, holds the information of the user that has requested
help to an Admin via the App.

The "Robot" Table, holds all the robot information, like his State, if it is rented or
is in stand by.

The "Market" Table, holds all the market information, like the map pre-saved
that the Robot will use.

The "Market_XY" Table holds all the position of the map that user can send the
robot when it is lost.

The "GoTo" Table, holds the position name that the robot will go when the user
via App request the robot to go when it is lost.

3.2.2 Host database on the Cloud

The database needed to be hosted on the cloud so the server could access it.
Atlas MongoDB allowed the team to host the database on the Cloud, since it’s
the same creator of the database it self.

3.2.3 Host server on the Cloud

Similarly the Server needed to be hosted on the cloud so the app and the robot
could have access more easily to the server. For that Heroku was chosen to host
the Server on the cloud.

3.2.4 Integration with the server

The functionalities developed for the robot were mentioned in item 3.1.5. As for
the app, they are:

• Receive sign up from the app

• Authenticate login from the app

• Receive message from the app to add balance to the user

• List active user to the Admin on app

Technical Report: FollowYolo 13

• List states of the robots to the Admin on app

• Receive message from the app to start a rent

• Receive message from the app to end a rent

• Receive message from the User to call an Admin via app

• Send message to the admin when a user request via app

• List predetermined location of the map

• Receive message of the predetermined location via app

• Indicate if the robot is lost

Each functionality has an endpoint associated, where the app can communicate
with.

3.3 App

The app objective is to provide a user interface in his/hers smartphone capable
of helping the user to do all the required operations to rent a robot, like login,
sign up, scan QR code, see balance, start rent, etc. It also gives the server all the
needed information to start and end a rent, as which robot the user wants to use,
etc.

Another set functionality is the administrative toolkit to an admin to operate in
case of some failure. The app possible operations can be seen on the Figure 9.

For the app, Flutter and Dart were chosen as the development platform. Because
of its simplicity and huge amount of tools to use, and despite of being a newer
platform, there is a lot of help that you can find on the internet.

After some study, the software was made. Figure 9 shows the Use Case Diagram.
This also includes some API routes documentation, things like all of the needed
API Endpoints, the request and responses and the content of those. Because
the app communicates uses the server REST API to send all the needed requests
to the database, in JSON format, for example, sign up a new user or check the
balance. In Figure 10 it is possible to see the normal renting process, with the
app final design.

3.4 Tests

The following tests were made to check for the requirements defined in Section
1.1:

• New user sign-up and login using the app

Technical Report: FollowYolo 14

Figure 9: General use case diagram.

• User adds money to its account using the app

• User rents an available robot scanning a QR code using the app

• Person in simulation, representing the user, moves around the market
(controlled by the team using a keyboard interface)

• The robot follows the person avoiding obstacles

• User ends the rent using the app

Technical Report: FollowYolo 15

Figure 10: Renting process in the app.

The QR reading with the smartphone app triggers the start of the simulation.
The simulation has four obstacles. Two of these obstacles are represented by a
big box and a small box to test the capability of the LIDAR sensor. The other ob-
stacles are a representation of people that usually are walking in the market. One
of these is static and the other moves randomly throughout the environment.
The user was controlled using keyboard commands to simulate the movement
of a person. And FollowYolo follows the user throughout the market.

The navigation to specific spots in the market was also tested. In this navigation,
without an ARTag as the objective, FollowYolo was able to avoid the obstacles.

The produced video shows some of the tests made as well as a quick explanation
of the entire project. The code is available in the project’s GitHub repository.

https://www.youtube.com/watch?v=pA7XesxDzQc
https://github.com/oficinas3

Technical Report: FollowYolo 16

4 Difficulties

The main challenges related to the robot itself were:

• How to make the simulation itself. There wasn’t a lot of updated docu-
mentation on the subject.

• The AR Tag tracking package (ar-track-alvar) is not well documented what
made difficult to debug problems.

• The incompatibility of packages, ROS version and Ubuntu version. Mainly
the ar-track-alvar package wasn’t yet supported on the latest version of
ROS what made the debug even more complicated. And the need for a
specific version of a specific distribution of Linux also made the project
more complicated when needed to change packages versions.

• Problems when sharing code between members. Almost always the code
that worked on one member computer did not work for the rest of the
team, despite the same environment.

• The complexity of autonomous navigation combined with target follow-
ing was far greater than the expected.

While developing the server the main problems faced were:

• There were some problems when migrating from local host to the cloud,
there were some differences that needed more attention, but after the
transition was done, it was not an issue anymore.

• When the integration started with the app and later with the robot client,
some issues with this integration were changed to adapt to the format that
the client needed.

When developing the mobile app the main problems faced were:

• The major difficulty on the app development was the inexperience with
the Flutter platform. Doing the project in a limited time and simultane-
ously learning and searching how to do the needed tasks was particularly
challenging. Fortunately, there is plenty of material and documentation
on the internet.

• Some flutter components change too fast, so the code that worked 5 months
ago could not work now.

Technical Report: FollowYolo 17

5 Results

Due the strict schedule, the app could not have all the planned features imple-
mented, meaning, the secure communication with cloud server.

Since the project was simulated, the team had no costs making the hardware.
The tables bellow show the estimated project’s budget. Table 4 shows the total
estimated cost for the construction of the FollowYolo hardware project.

Component Price Comment
Chassis R$200.00 Value to print the

model
Motor with encode R$228.00 2 motors
Motor drive module with
L298N

R$18.00

MPU-6050 R$16.00
Arduino Uno R$34.00
LiDar 360 sensor R$664.00 Imported from

China
Raspberry Pi 3 R$ 236.00 Imported from

China
Raspberry Pi Camera v1 R$50.00
Battery LiPo R$281.00 Dolar cotation:

R$5.64
Total: R$1,727.00

Table 4: Project budget.

About the robot, the team could not deliver a good target following, meaning,
the robot wasn’t able to follow the user very well mainly when doing curves.
There were many complications with the AR Tag following, one of the main
problems were the detection consistently failing, even when the person is static,
sometimes the AR Tag was detected only when seen with an angle also the axis
coordinate was big problem, for example the distance in the Z axis of the robot
wasn’t in the Z axis of the returned position of the ar-track-alvar package.

6 Conclusions

This project was very challenging for the whole team, mainly on the beginning
when defining the project and in the end when integrating all the different parts,
but it gave the team knowledge about new technologies, like ROS, Gazebo, Flut-
ter and Heroku and also, just as important, knowledge about how to manage big
projects and team work. These skills are very useful in a working environment

Technical Report: FollowYolo 18

since engineers always work in teams and needed to be able to communicate
concisely and effectively, both requested during the project.

Another point that is worth mentioning is the need for documentation and plan-
ning, in particular the team faced problems with the schedule, that need a full
rework 4 weeks after the start of the project, fortunately this was foreseen in
the Risk Analysis, which was another document that showed its usefulness, and
some requirements were dropped to keep the development of the project.

For the 6 weeks of the project development the team estimated a total of 360
hours. At the end, a grand total 423 hours of work were spent to develop the
project. An excess of 63 hours were used, which composed about 15% of the total
time spent. The actual executed time of the project exceeded the estimations by
17.5%.

Everything in this report and more can be found in the project’s blog and in
the GitHub repository. Also, a video was produced to summary all that was ex-
plained in this document and give an overview of the project.

https://www.notion.so/FollowYolo-6cbd112756fe47a8bdb3581a259d2f4f
https://github.com/oficinas3
https://www.youtube.com/watch?v=pA7XesxDzQc

	Introduction
	Requirements
	Project overview

	Technologies
	Robot
	Simulation
	Server
	App

	Development
	Robot
	Turtlebot 3 Waffle Pi
	Mechanical design
	Hardware project
	Simulation
	Communication with the cloud server

	Server
	Database
	Host database on the Cloud
	Host server on the Cloud
	Integration with the server

	App
	Tests

	Difficulties
	Results
	Conclusions

