
Universidade Tecnológica Federal do Paraná – UTFPR

Departamento Acadêmico de Eletrônica – DAELN

Departamento Acadêmico de Informática – DAINF

Computer Engineering
Integration workshop 3 (EEX23) – S71 – 2021/2

Technical Report
FareSeer

André Otavio Pedrofeza de Oliveira – andreoliveira.1998@alunos.utfpr.edu.br

Arthur M. S. Oliveira – arthuroliveira@alunos.utfpr.edu.br

Bruno Guillen – brunoguillen@alunos.utfpr.edu.br

Felipe Alves Barboza – felipebarboza@alunos.utfpr.edu.br

Leonardo Muraroto de França Reis – leonardoreis@alunos.utfpr.edu.br

Lucas Felipe Ribeiro – lucasr.1996@alunos.utfpr.edu.br

December, 2021

Abstract

Our main motivation stems from a desire to improve existing public trans-
port systems by integrating innovative technologies into the ticket gates
found in bus stations. The traditional bus ticket payment process is prone
to security breaches: if a passenger’s magnetic card is stolen, or if a special
benefits card is being used illegally, the transgressor can still use the card
until it is manually blocked by a system administrator - a process that can
greatly benefit from facial biometric technologies. Also, cameras present
in bus stations are currently used for security reasons only: the camera
output could provide valuable information for crowd management and lo-
gistics purposes. With this in mind, we have implemented a system which
uses facial recognition technologies to facilitate the process of blocking
magnetic cards; and also, by analyzing camera feed, we employed the use
of crowd counting algorithms to estimate the amount of people inside a
bus station at a given moment in time. The present document details the
development of the aforementioned project.

1 Introduction

Nowadays, facial recognition technologies are being applied to many different
situations for fraud prevention purposes, since they are both reliable and offer
better means of identity verification than traditional methods. Recently, some
major cities in Brazil, such as São Paulo[1] and Curitiba[2], have already started
integrating these technologies into their public transportation systems, but there
still is a long path ahead until most cities in Brazil could benefit from these
systems. Moreover, the logistics of public transportation as a whole could be
revolutionized through the adoption of crowd estimation algorithms: the video
feed from security cameras present at bus stations could be analyzed to esti-
mate the amount of people at a given location in time, providing an invaluable

1

Technical Report: Fareseer 2

source of information to logistics systems which aim to maximize the efficiency
of resource allocation. With the crowd concentration data collected across time,
robust logistic systems could predict situations that would increase the flow of
passengers, enabling the preemptive dispatchment of vehicles to areas requir-
ing them the most. In this manner, buses could have their itineraries optimized
as a function of the concentration of people, potentially sparing resources spent
on fuel and minimizing the time passengers spend on their daily commutes.

Having the aforestated scenario in mind, we have conceptualized FareSeer,
a system that integrates both facial recognition and crowd counting functional-
ities into a turnstile, and also allows users to pay tickets with smartphone NFC
technologies and RFID magnetic cards.

1.1 Project Overview

Figure 1: A block diagram of the system.

As depicted on Figure 1, the project is centered around a system embedded
into a turnstile, consisting of a Raspberry Pi 3B+ connected to two cameras. A
box, placed above the turnstile, houses the micro-controller, the facial recogni-
tion camera and an NFC/RFID reader. Also, to provide system status informa-
tion, the box has an LCD display, LEDs and a buzzer attached to it. The turnstile
locking mechanism is composed of a PVC cog placed above an infrared sensor
which is used to determine when the turnstile has rotated. A servo-motor un-

Technical Report: Fareseer 3

locks the mechanism whenever the user is allowed entrance. The crowd count-
ing camera is placed on the bus station’s ceiling, and sends its feed to the micro-
controller.

A Web application containing two different categories of users was also de-
veloped: regular users can register themselves, submit a picture of their faces,
login and see their ticket payment history; admins can list the users registered
on the platform, add credits to their accounts, and block their cards. Users can
also pay the tickets with a mobile application that allows them to login, register
and enable NFC communication. The Web application front-end and back-end
components as well as are both hosted on the cloud.

Facial biometrics processing take place as soon as the user completes a suc-
cessful payment transaction. Firstly, the system will attempt to find a face on
the video feed provided by the facial recognition camera. If a face is found, the
last picture taken will be sent to the cloud along with the payer’s ID, where it will
then be processed. The cloud API compares the image received with the one reg-
istered on the user’s profile and returns the similarity, as well as the confidence
levels of the comparison, to the micro-controller. Based on the API response,
the micro-controller flags the user appropriately.

The pictures captured by the crowd counting camera are periodically up-
loaded to the cloud, where the counting operation takes place. The results of
this process - both the bus station image and the estimated amount of people
inside - are stored into the database and displayed to system administrators on
the Web application.

2 Project Specifications

The following subsections detail the requirements, materials and tools employed
in the development of our project.

2.1 Requirements

After having established the goals of the project, a requirements analysis was
conducted. Four main areas of development were identified: Hardware and Me-
chanical Components, Web Application and Image Processing, Mobile Applica-
tion, and Firmware. They were divided this way based on the interrelationships
between the technologies they encompass. Tables 1 to 4 present the require-
ments of the project.

Table 1: Hardware Requirements

Hardware Functional Requirements

H-FR01
The Hardware must receive and process signals from one camera
for facial recognition purposes.

Technical Report: Fareseer 4

H-FR02
The Hardware must receive and process signals from one camera
for crowd counting purposes.

H-FR03 The Hardware must connect to the Internet via Wi-Fi.
H-FR04 The Hardware must control the gate locking mechanism.
H-FR05 The Hardware must be able to read NFC and RFID frequencies.

Hardware Non-Functional Requirements
H-NFR01 The System must be implemented with a Raspberry Pi 3B+.

H-NFR02
The System must have two USB cameras, one for facial recogni-
tion and another for crowd counting.

H-NFR03 The System must have an NFC/RFID reader module.

H-NFR04
The System must have an LCD display 16x2 to show operation
status.

H-NFR05
The System must have a servomotor to lock and unlock the ticket
gate.

H-NFR06
The System must have an infrared sensor to detect when the
ticket gate moves.

H-NFR07 The System must have LEDs to show the operation status.

H-NFR08
The System must have a Buzzer that activates whenever the user
is allowed entrance into the tube station.

H-NFR09
The mechanical structure must be constructed with wood and
PVC pipes.

Table 2: Software (Web Application and Image Processing) Require-
ments

Web App and Image Processing Functional Requirements
S-FR01 The web app must allow users to register themselves.

S-FR02
The web app must have two different categories of users: admins
and regular users.

S-FR03 The web app must allow users to login and logout.
S-FR04 The web app must allow users to submit pictures of their face.
S-FR05 The web app must allow users to receive credits to pay tickets.

S-FR06
The web app front-end and back-end must be hosted on the
Cloud.

S-FR07 The web app must display the user’s history of ticket payments.

S-FR08
The web app must have an admin page that displays the last tube
station image processed and the amount of people counted on
that image.

S-FR09 The system must be able to recognize the user’s face.

S-FR10
The system must be able to estimate the amount of people inside
the tube station.

Technical Report: Fareseer 5

S-FR11
The system’s database shall periodically be replicated locally, in
order to keep the ticket gate working when there is no connection
with the cloud systems.

S-FR12
The facial recognition system must flag users who attempt to use
another passenger’s card.

S-FR13
The admin page shall display the users flagged for suspicious ac-
tivity.

S-FR14
The admin page shall display the users flagged for failing the facial
recognition process.

S-FR15 The admin page shall allow admins to block flagged users.
Web App and Image Processing Non-Functional Requirements

S-NFR01 The web app front-end must be developed with Vue.js.
S-NFR02 The web app back-end must be developed with Node.js.
S-NFR03 The database must be implemented with PostgreSQL.
S-NFR04 The cloud services must be implemented with AWS.

S-NFR05
The image processing shall be conducted using Cloud Computer
Vision Services and IOT Edge technologies.

S-NFR06
The facial image recognition and crowd estimation shall be imple-
mented with Tensorflow CNNs and Cloud Cognitive Services.

S-NFR07
The admin page shall display a warning when the ticket gate is not
connected to the cloud server.

Table 3: Software (Mobile Application) Requirements

Mobile App Functional Requirements
M-FR01 The mobile app must allow users to register themselves.
M-FR02 The mobile app must allow users to login and logout.

M-FR03
The mobile app must allow users to submit pictures of
their face.

M-FR04 The mobile app must connect with the system via Wi-Fi.

M-FR05
The mobile app must allow the user to pay tickets via
NFC..

M-FR06 The mobile app must have access to the web app content.
Mobile App Non-Functional Requirements

M-NFR01 The Application must be developed with Flutter SDK.
M-NFR02 The Application must be developed with Dart.

Technical Report: Fareseer 6

Table 4: Firmware Requirements

Firmware Functional Requirements

F-FR01
The Firmware must connect to the cloud server.

F-FR02
The Firmware must periodically receive images from the crowd
counting camera and send them to the server.

F-FR03
The Firmware must receive images from the facial recognition
camera after the user activates the NFC/RFID module.

F-FR04
The Firmware must notify the user whether facial detection suc-
ceeds or fails.

F-FR05 The Firmware must notify when the user doesn’t have funds.

F-FR06
The Firmware must notify when the user can pass through the
ticket gate.

F-FR07
The Firmware must notify the user when he has to look at the
camera.

F-FR08
The Firmware must read the infrared sensor to know when the
ticket gate moves and lock it again.

F-FR09 The Firmware must be able to lock and unlock the ticket gate.

F-FR10
The Firmware must determine if the image from the facial recog-
nition camera contains a face.

F-FR11
The face detected closest to the camera shall be the one used for
the facial recognition purposes.

F-FR12

If the facial detection fails after a certain amount of attempts, the
user shall be granted entrance through the ticket gate (provided
they have enough funds), flagged for suspicious activity and the
last picture taken will be sent to the cloud for the image process-
ing.

Firmware Non-Functional Requirements
F-NFR01 The Firmware must be developed with Python.
F-NFR02 The Firmware must be implemented in a Raspberry Pi 3B+.
F-NFR03 The Firmware must be able to send JSON data.
F-NFR04 The Firmware must be able to receive JSON data.

F-NFR05
The Firmware must show the notifications through the LCD dis-
play.

F-NFR06
The Firmware must control a servomotor to lock and unlock the
ticket gate.

2.2 Materials and Tools

The subsections below describe the materials and tools employed in the con-
struction of our project.

Technical Report: Fareseer 7

2.2.1 Mechanical Structure

The mechanical structure was assembled with 6mm thick MDF boards. Wooden
broom handles where used to create the turnstile’s rotating tripod component,
and the locking mechanism was created with a PVC cog and MDF locking pins.

A ready-made PVC box was acquired to house the electronic components
and the facial recognition camera. It’s dimensions are: 20x16x8cm.

2.2.2 Electronic Components

The embedded systems consists of a Raspberry Pi micro-computer that receives
and processes signals from the sensors and cameras. A PN532 NFC reader mod-
ule is used for the smartphone and RFID card recognition system. The locking
mechanism is composed of a Servomotor MG995, and an LM393 infrared sensor
is used to detect when the mechanism‘s cog has rotated. A 16x2 LCD display, red
and green LEDs and a buzzer are used to display the system‘s status operation.
Two USB webcams are used for image capturing.

2.2.3 Cloud Services

The Web App‘s front-end and back-end, along with our database, are hosted on
the cloud using Amazon Web Services (AWS) [3], s3 buckets were used for stor-
ing registered images for facial comparison. Amazon Rekognition API was used
to conduct the image processing. The following were the API modules used: De-
tectFaces was used for comparing the registered image on the s3 bucket with the
user’s ID and DetectLabels was used for crowd counting, by selecting the Person
tags on the image analysis response.

2.2.4 Web Application

The Web Application’s front-end was developed with Vue.js, an open-source JavaScript
framework that enables the creation of sophisticated Single-Page applcations
[4]. To create the user interface, the Materials Design components from Vuetify,
a UI framework for Vue.js, were utilized [5]. The back-end was developed with
Node.js, also an open-source framework for JavaScript.

2.2.5 Mobile Application

Flutter and Dart were used to develop the Mobile Application. Flutter is a cross-
platform, open-source UI toolkit created by Google.[6]. Dart is an object-oriented
programming language designed for the development of mobile and web apps.[7]

Technical Report: Fareseer 8

3 Development

This section describes the development process of our project. The exact func-
tioning and flow of operation of all the elements are further detailed.

3.1 Project Management

Project management was based on the agile method Scrumban using Flying-
Dount.io as our Dashboard. The team had daily meetings, where each member
reported how their assigned tasks were going on Sprint and Deliverable. Our
schedule worked as the backlog for the project and our Professors feedbacks
were considered for the validation of our tasks. It means our Epic was our project
and each Project Iteration were the Deliverable‘s assigned by them.

3.2 Mechanical Structure

Figure 2: The assembled mechanical structure.

Technical Report: Fareseer 9

The mechanical structure was first sketched after a real sized turnstile. After
some calculations, the ideal dimensions were established. It was then modeled
using the software SketchUp for a visualization and a proof of concept. After-
wards, the individual pieces were ordered and crafted by a woodworker. Finally
(depicted on Figure 2), the structure was assembled with glue and nails.

The locking mechanism was also created based on similar ones found in ex-
isting turnstiles [8]. It consists of a turnplate (cog) locked in place by moving
pins placed on its sides.

3.3 Hardware and Firmware

First, we tested all of our electronic components individually to ensure that they
were all working as expected and were not defective. That done, we made the
electronic project.

Figure 3: A schematic of the electronics

With the electronics project in hand, we assembled it on a breadboard and
tested all the components working together. Finally, we performed the final as-
sembly on a standard board. The NFC reader module is powered by an external
3.3v source and communicates with the Raspberry Pi via UART. The 16x2 LCD
display communicates via I2C. As the display operates on a voltage of 5v, we
used a logic level converter from 5v to 3.3v to allow connection to the Raspberry.

Technical Report: Fareseer 10

The buzzer used for the sound signal is of the active type, and it is powered by an
external 5v source. We used an NPN transistor to drive it through the GPIO. LEDs
are connected directly to the GPIO using resistors. The servo motor that controls
the turnstile lock is powered by an external 5v source and controlled by the Rasp-
berry’s dedicated PWM generator hardware. The infrared sensor used to detect
when the engine has rotated is powered by an external 3.3v source and is directly
connected to the GPIO. In addition, we have two USB cameras connected to the
Raspberry, one is used for facial recognition and the other for crowd counting.

Facial detection was implemented with Histogram of Oriented Gradients (HOG)
[9], an object detector algorithm. Experimentation with different algorithms,
such as Haar Cascade [10], has shown that HOG was the best option for our
needs, since it can effectively detect faces on the images and runs well on a Rasp-
berry.

As soon as users approximate their cards or smartphones to the NFC reader,
the algorithm will attempt to find a face on images captured from the facial
recognition camera. In attempting to find a face, a total of 10 pictures will be
taken, each at 50ms intervals; HOG spends around 60ms to process the image,
so each iteration takes 110ms. If no face is found after all these attempts, the last
image taken will be the one sent to the cloud for facial recognition purposes (As
depicted on Figure 4). Amazon’s Rekognition API will then compare the image
received with the one registered on the user’s profile and return the similarity
and confidence levels of the comparison. After receiving the cloud’s response,
the firmware will determine if any suspicious activity took place. If the similar-
ity values were below 50% with a confidence level of over 90%, the user will be
tagged for fraudulent activity. If no face was found on the image, or the simi-
larity values were between 50-70% with a confidence level of over 90%, the user
will be tagged for suspicious activity.

Every minute, a picture of the passengers inside the bus station is taken by
the crowd counting camera and also sent to the cloud (Figure 4), where the im-
age will be processed and the estimated number of people in it will be registered
on the database. The pictures are stored in a AWS S3 Bucket, a service that allows
you to upload a file and it returns a link that can be accessed later.

Technical Report: Fareseer 11

Figure 4: An overview of the communication between the Raspberry and Cloud Sys-
tems

In order to allow the payment functionality to work when the turnstile has
no connection to the Internet, a database replication system was implemented.
Our setup uses a PostgreSQL database server and we have it locally cached on
the Raspberry Pi using SQLite [11]. The only special configuration made was to
increase the amount of memory SQLite can use for caching. Furthermore, it is in
WAL (Write-Ahead Logging) mode, so that the database is never blocked, allow-
ing the turnstile to continue operating normally while the database is updated.

Our local database users table has four columns: the user id, the NFC card

Technical Report: Fareseer 12

id, a flag that indicates if the user is blocked and the amount of his balance.
We have another table that stores the history of updates and a table that stores
payments made if there is no internet to send them to the database server. If our
local database was never updated, we download the entire table from the server.
However, if it already has some data, we download only the lines that underwent
some update.

3.4 Web Application

This sections details the development and functionalities of the Web App’s front
and back end components. All diagrams used to design the software can be
found on this link.

3.4.1 Front End

Figure 5: A sitemap of the Web Application

The Web App interface distinguishes between two different classes of users:
Admins and Regular Users. Depicted on Figure 5 is a sitemap of the applica-
tion. Admins have access to a dashboard (Figure 6) that displays the users reg-
istered on the system; there, they can check a user’s details, see their payment
history, add credits to their balance, assign an RFID to their account and also
block them. A real money payment transaction system was not implemented

Technical Report: Fareseer 13

since doing so was out the scope of this project. We assume that a company
willing to use our system is either going to provide such a service themselves
or seek a third party to do so. Therefore, the current credits system was only
implemented for simulation purposes.

RFIDs assigned to users are to be the same ones stored in the magnetic cards
they’ll use. Whenever a passenger approximates his card or smartphone to the
turnstile’s NFC module, the RFID assigned to the user will be utilized in the com-
parison. When a user is blocked, the turnstile will reject accesses coming from
the RFID associated to them.

Figure 6: The users list displayed to system administrators

Users who fail the facial recognition process are tagged accordingly. When-
ever a passenger is tagged for suspicious or fraudulent activity, the picture taken
at the moment the payment occurred is stored as evidence. Admins can then
see these pictures when they open up a user’s payment history and use this to
inform their decision when blocking a user. System administrators also have ac-
cess to the Crowd Counting page (Figure 7), where a history of the pictures taken
from the crowd counting camera along with the estimated amount of people in
the image are shown.

Regular users have access to a dashboard that displays their payment history
along with a graph of the total amount of credits spent by month. All users have
access to the Login, Account and Sign Up pages. During the sign-up process,
users are required to upload a profile picture that will be used for facial recog-
nition purposes. On the Account page, users can see their card’s status and the
information they entered when registering on the system. There, they also have
the option of editing their profile picture.

Technical Report: Fareseer 14

Figure 7: The Crowd Counting page

3.4.2 Back End

The Back End is responsible for managing the request from the Web Page, Mo-
bile and Firmware. It is hosted with AWS on a Ubuntu Server 18.04. It runs a
Node.js server on port 3333 and a reverse proxy is used on the port 80, so that
the connection received in this port is redirected to the server. Also, the domain
is configured using CertBot [12], which enables the use of an SSL Certificate and
HTTPS protocol on the routing.

3.5 Mobile Application

Figure 8: Mobile Application Pages

The Mobile Application‘s main purpose is to provide NFC payment functionality
to users. By using Android’s Host-based card emulation technology, the applica-

Technical Report: Fareseer 15

tion can emulate a magnetic card and communicate with an NFC reader [13]. As
depicted on Figure 8, the App‘s UI has five different pages: Login, Sign Up, Main
Menu, NFC Payment and also a Webview that displays the Web App’s content.
By using the app, users can register themselves on the platform, login, enable
NFC to pay by approximation and access contents from the Web App.

3.6 Budget

Figure 9 lists all materials used in the project along with their costs. We were
required to spend R$150 per member, totaling R$900. In developing the project,
a total of R$1030.34 were spent (14% more than the required amount).

Figure 9: Materials used and their costs

3.7 Schedule

The project was developed over the course of seven weeks. Table 5 below presents
an overview of the total time spent on each deliverable. The complete schedule
can be found on this link.

Table 5: Overview of the Scheduled Hours

Deliverable Estimated Hours Hours Worked
Blog and Project Plan 61 60.5
Mechanical Project 42 44
Electronic Project 49 36
Software Project 317 256.5
Hardware and Software Integration 27 45.5
Final Tests and Documentation 127 79
Total 623 521.5

Technical Report: Fareseer 16

4 Results and Conclusions

Overall, despite time constraints and difficulties that arose from the COVID-19
pandemic, our team was able to successfully accomplish what was initially pro-
posed. The system we’ve developed not only performs well, but could, in theory,
be applied to a city like Curitiba.

Both the crowd counting and facial recognition systems yielded satisfactory
results. Faces can be reliably recognized even if the person is using different
clothing items such as face masks, glasses and hats (Figure 10), and two different
people are readily recognized as not being the same (Figure 11).

Figure 10: Comparing pictures of the same person wearing different clothing items.
Confidence: 99.99813, Similarity: 89.62433

Technical Report: Fareseer 17

Figure 11: Comparing pictures of two different people.
Confidence: 99.99728, Similarity: 0.09030

For testing purposes, pictures of passengers inside bus stations were taken.
Ideally, this would be done by security cameras positioned on the ceiling, yet, in
our case, they were captured from a standing position. The estimated number
of people was, at all times, very close to the actual amount (Figures 12 and 13).

Figure 12: Crowd counting in a bus station.
API Count Response: 12, Expected: 13

Technical Report: Fareseer 18

Figure 13: Crowd counting in a bus station.
API Count Response: 9, Expected: 9

Whenever the waiting people move around and from behind others the num-
ber of detections may vary. The estimation could be further improved by aver-
aging out the number of people detected on multiple samples.

According to statistics provided by URBS [14], for the year of 2020, the num-
ber of active transport cards is 2,035,711, and the average number of passengers
transported per day is 710,589. For the year before the pandemic (2019) the the
average number of passengers transported per day was 1,331,610. With regards
to the database replication system, our benchmark tests demonstrate that it can
update 10 million rows in a table with 10 million users in around 3.3 minutes.
Considering that our local cache can undergo several small updates a day (ev-
ery minute, for example), performing the operation only on rows that have had
some modification, and with a number of affected lines per day of around 1.3
million (according to the URBS statistics in 2019), we show that even for a real-
world situation, with a high volume of data, our system could be applicable.

Moreover, in terms of economical viability, Amazon charges $0.001 per im-
age processed by their Rekognition API [15]. As of 2020 the number of tube sta-
tions in Curitiba is 333 [14]. If the crowd counting system were to take one pic-
ture a minute for 24 hours in all stations, a total of 479,520 pictures would be
taken in a day, totaling $479.52 in fees. Given that the daily average amount
of paying passengers in 2020 was 340,199 and the bus ticket price was R$4.50,
URBS earned around R$1,530,895.5/day in tickets on that year. Therefore, if we
convert the daily crowd counting processing cost from USD to BRL (1 USD = 5.68
BRL), this value would represent approximately 0.18% of the total URBS earns in
tickets in a day. Similarly, the costs spent on facial recognition processing could
also be afforded, since every picture requires R$0.00568 to be processed; a value
that could be covered by increasing the ticket price by less than R$0.01.

Technical Report: Fareseer 19

References

[1] Folha de S. Paulo. Reconhecimento facial bloqueia 331 mil bilhetes
Únicos em sp, 2019. https://agora.folha.uol.com.br/amp/sao-
paulo/2019/06/reconhecimento-facial-bloqueia-331-mil-
bilhetes-unicos-em-sp.shtml.

[2] Gazeta do Povo. Ônibus de curitiba vão ter reconhecimento facial e
pagamento com celular e cartão, 2020. https://www.gazetadopovo.
com.br/curitiba/onibus-de-curitiba-vao-ter-reconhecimento-
facial-e-pagamento-com-celular-e-cartao/.

[3] Amazon. What is aws?, 2021. https://aws.amazon.com/what-is-aws/
?nc1=f_ccl.

[4] Vuejs. What is vue.js?, 2021. https://vuejs.org/v2/guide/index.html.

[5] Vuetify. What is vuetify.js?, 2021. https://vuetifyjs.com/en/
introduction/why-vuetify/#getting-started.

[6] Flutter. Flutter architectural overview, 2021. https://docs.flutter.
dev/resources/architectural-overviewl.

[7] Dart. Dart overview, 2021. https://dart.dev/overview.

[8] Anson. Tripod turnstile user manual, 2021. https://pfccontrols.com/
files/Tripod-Turnstile-Manual-EN.pdf.

[9] Carlo Tomasi. Histograms of oriented gradients, 2021. https://courses.
cs.duke.edu/fall15/compsci527/notes/hog.pdfl.

[10] OpenCV. Cascade classifier, 2021. https://docs.opencv.org/3.4/db/
d28/tutorial_cascade_classifier.html.

[11] SQLite. About sqlite, 2021. https://sqlite.org/about.html.

[12] Certbot. Whats certbot?, 2021. https://certbot.eff.org/pages/
about.

[13] Android. Host-based card emulation overview, 2021. https://
developer.android.com/guide/topics/connectivity/nfc/hce.

[14] URBS. Urbs em números, 2020. https://www.urbs.curitiba.pr.gov.
br/institucional/urbs-em-numeros.

[15] Amazon. Preço do amazon rekognition, 2021. https://aws.amazon.com/
pt/rekognition/pricing/.

