
Federal University of Technology - Paraná - Brasil – UTFPR

Academic Department of Electronics – DAELN

Academic Department of Informatics – DAINF

Computer Engineering
Integration Workshop 3 (EEX23) – S71 – 2021/1

Technical Report
ElectionPipa

Alexandre N. Bonacim – alebonacim@hotmail.com

Gabriel K. Brylkowski – gabrielkuhnenb@gmail.com

Juliana R. Viscenheski – jviscenheski@alunos.utfpr.edu.br

Maria Fernanda Azolin – azolin.mf@gmail.com

Mateus V. Freitas – mateusvfreitas@gmail.com

Rafael H. Ramos – ramosrafh@gmail.com

August, 2021

Abstract

This document reports the devolpment of ElectionPipa, the project of a
smarter paper-based election system. The proposal revolves around get-
ting rid of most of the manual work that is required to hold an election in
small instances – such as a school board election or a neighborhood coun-
cil –, both for preparing the voting time and for accounting the results af-
terwards. ElectionPipa consists of an electronic system that can identify
the voters by their fingerprint and a counting system that is based on im-
age recognition. Alongside all that, a web application is used to show stats
of the election during the voting time and the results after, while a mobile
application is used to setup the voters and the schedule beforehand.

1 Introduction

Elections have been present in society for quite a while now. Most organizations,
institutes or even small groups usually have some form of choosing a person to
be their representative, but, in most cases, those elections take quite a while to
be held, either because of the time necessary to count the votes afterwards or
due to the long time it takes to verify the voters identities to make sure that no
fraud happens.

With that in mind, creating a paper-based election system that can guaran-
tee the unique identity of every voter and eliminate the manual work of count-
ing – or even recounting, if necessary – the results is a good way to optimize the
elections in small instances, such as college boards, student councils or even
neighbourhood syndicates.

1



Technical Report: ElectionPipa 2

1.1 Requirements

To accomplish such goals, a list of functional and non-functional requirements
was compiled. These requirements approach every instance of the project, in a
way that every module has its requirements specified and the system can achieve
its goal. All project’s requirements are described from Table 1 through Table 5.

Web Application Functional Requirements
W-FR01 The web app must display election results after voting time
W-FR02 The web app must display in real time the numbers of voters

who have already voted
W-FR03 The web app must display the election schedule

Web Application Non-Functional Requirements
W-NFR01 The frontend of the web application must be developed us-

ing Javascript + HTML + CSS
W-NFR02 The backend of the web application must be developed us-

ing NodeJS + Express
W-NFR03 The web server must be hosted at Heroku cloud platform

Table 1: Web application requirements

Mobile Application Functional Requirements
M-FR01 The mobile app must allow the administrator to manage the

candidate list outside voting time
M-FR02 The mobile app must allow the administrator to choose the

election date and duration before voting time
M-FR03 The mobile app must allow the administrator to access re-

count mode in the ballot counter
Mobile Application Non-Functional Requirements

M-NFR01 The mobile app must be developed in Swift
M-NFR02 The mobile app must read/write data from the database
M-NFR03 The mobile app must run on iOS devices

Table 2: Mobile application requirements



Technical Report: ElectionPipa 3

Database Functional Requirements
D-FR01 The database must be accessible by the other modules

through the internet
D-FR02 The database must store the voter’s name, unique identifier,

password, fingerprint and voting status
D-FR03 The database must store the election schedule
D-FR04 The database must store the candidates
D-FR05 The database must store each vote as ballot identifier and

voted candidate
Database Non-Functional Requirements

D-NFR01 The communication must use a socket-based request-
response protocol

D-NFR02 The database must be cloud-based
D-NFR03 The database must be MongoDB based
D-NFR04 The stored data must be documents in JSON (JavaScript Ob-

ject Notation) format
D-NFR05 The database must not provide correlation between a voter

and his vote
D-NFR06 The database must have a backup

Table 3: Database requirements



Technical Report: ElectionPipa 4

Authentication Module Functional Requirements
A-FR01 The authentication module must be able to authenticate the

voters through their fingerprint
A-FR02 The authentication module must be able to authenticate the

voter through their unique identifier and password as fall-
back method

A-FR03 The authentication module must display error/success mes-
sages when authenticating the voter

A-FR04 The authentication module must provide feedback when
failing to authenticate the vote or if the voter has already
voted

A-FR05 The authentication module must not authenticate a voter
while another one hasn’t had their vote validated by the bal-
lot counter

Authentication Module Non-Functional Requirements
A-NFR01 The authentication module must use the FPM10A finger-

print scanner
A-NFR02 The authentication module must use a USB keypad
A-NFR03 The authentication module must use a 16x2 LCD display
A-NFR04 The authentication module must use green and red LEDs
A-NFR05 The authentication module must swap authentication meth-

ods after 3 failed attempts

Table 4: Authentication module requirements

Ballot Counter Functional Requirements
B-FR01 The lid must open when the voter is authenticated
B-FR02 The lid must remain closed if the voter is not authenticated
B-FR03 The ballot counter must have a conveyor belt
B-FR04 The conveyor belt must be activated after the voter is authenticated
B-FR05 The illumination inside the box must be turned on after the voter is

authenticated
B-FR06 The camera must start capturing after the voter is authenticated
B-FR07 The ballot counter must allow recount of votes
B-FR08 The camera must detect the ballot QR code
B-FR09 The camera must identify the vote content
B-FR10 The conveyor belt must be able to spin both ways
B-FR11 The ballot counter must display instructions for inserting the ballot
B-FR12 The ballot counter must display which candidate was recognized in

the ballot and wait for the voter confirmation
B-FR13 The ballot counter must allow the voter to confirm that their vote is

correct through the use of the keypad



Technical Report: ElectionPipa 5

B-FR14 The ballot counter must allow the voter to disconfirm that their vote
is correct through the use of the keypad

B-FR15 The ballot counter must store the vote in the box after the confirma-
tion

B-FR16 The ballot counter must eject the vote after the disconfirmation
B-FR17 The ballot counter must wait for the voter to reinsert their vote in

case of disconfirmation
B-FR18 The ballot counter must eject the ballot if the ballot identifier was

already inserted in the vote count
B-FR19 The ballot counter must eject the ballot if the ballot was inserted

with the back side facing up
B-FR20 The ballot counter must require the administrator to authenticate

before entering recount mode
B-FR21 The ballot counter while on recounting mode must check for

anomalies such as duplicated ballot identifier and identifier that
were not accounted for during the voting time

B-FR22 The ballot counter must check the database on startup if an election
is currently being held, which indicates that a power outage hap-
pened

B-FR23 The ballot counter after identifying a power outage will move the
conveyor belt so counted ballots will be thrown in the box and oth-
erwise returned

B-FR24 The ballot counter after identifying a power outage will require a
voter to authenticate again

Ballot Counter Non-Functional Requirements
B-NFR01 The ballot paper must have a ARTag with an identifier and the candi-

date options on the front side and a ARTag on the back that discerns
it as the back side

B-NFR02 The ballot counter conveyor belt must be made using a friction ma-
terial

B-NFR03 The ballot counter must use a step motor to move the conveyor belt
B-NFR04 The ballot counter must use a RPi Camera
B-NFR05 The ballot counter must have a locked box
B-NFR06 The ballot count must have light bulb inside the box
B-NFR07 The ballot counter must use a servomotor to open/close the box
B-NFR08 The microcontroller used must be the Raspberry Pi 3B
B-NFR09 The ballot counter must a 16x2 LCD display
B-NFR10 The ARTag must be generated using the OpenCV library
B-NFR11 The box must be built with cardboard
B-NFR12 The box must have approximately 10x20x30cm dimensions
B-NFR13 The box must have a lid with the same material as the box
B-NFR14 The lid must be controlled by the servomotor



Technical Report: ElectionPipa 6

B-NFR15 The ballot paper must be marked with a pen by the voter
B-NFR16 The ballot counter must wait up to 2 minutes for the voter to reinsert

their ballot in case it was ejected, after the time has passed it returns
to the authentication step

Table 5: Ballot counter requirements

1.2 Project overview

Figure 1: System overview

Figure 2: Subsystems overview

With all the requirements defined it is possible to create a block diagram of



Technical Report: ElectionPipa 7

the solution, as well as diagram of the project’s subsystems, as shown in Figures
1 and 2.

The initial solution design consists mainly of a voting station, a cloud server,
a web application and a mobile app. The voting station has many features: first,
it has a fingerprint sensor attached to it, which the voters use to authenticate
themselves during an election, so they can vote. Also, there is a numpad whose
purpose is to be a fallback method in case a voter can’t be authenticated with
his finger – due to bad fingerprints or any other issue –, where every voter has a
unique ID and password to be used in that case. The numpad is used to confirm
or cancel the vote too.

The ballot counter is the main part of the voting station. Inside of it there is
a camera and a conveyor belt: as the voter inserts the paper vote, the paper rolls
on the conveyor belt, while the camera tries to detect the chosen candidate. The
counter also has LEDs and a LCD display to give the user feedback on his actions,
such as confirm detected vote, error with the inserted paper and so on.

The cloud database is where the candidates, the election schedule and the
voter’s information is stored. All these informations are necessary for the elec-
tion to take place. The mobile app is used to create and send this data to the
server, while the web application works as an election follow-up, showing the
schedule, the real time statistics and, after voting time, the results.

2 Technologies

2.1 Fingerprint Recognition

The project uses a fingerprint optical sensor for the authentication system, model
FPM10A [1]. The sensor generates an 8 bit grayscale image from the voter’s fin-
ger and then extract the template from it.

The template is a set of features such as cores, deltas and minutiaes found
on a fingerprint. Cores are points near the center of the finger that usually have
a swirl around, deltas are points in a loop or whorl that usually have a triangular
shape diverging parallel ridges and minutiae are the points where an ridge ends
or bifurcates.

After the template extraction the sensor save it in a FLASH memory and as-
signs an unique identifier to the registered fingerprint. This unique identifier
is what the team uses to assign a fingerprint to a enrolled voter. The returned
id in the enrolled process is associated, manually, to the voter in the database
collection.

During the authentication step the sensor search in the saved templates if
there’s a match for the finger on the sensor and, if it finds one, it’ll return the
unique identifier assigned to the found template. We check the database to find
a voter with that ID so they can be authenticated.



Technical Report: ElectionPipa 8

2.2 Cloud Database

MongoDB [2] is an object-oriented, simple, dynamic, and scalable NoSQL database.
It is based on the NoSQL document store model. The data objects are stored as
separate documents inside a collection — instead of storing the data into the
columns and rows of a traditional relational database. The motivation of the
MongoDB usage is to implement a data store that provides high performance,
high availability, and automatic scaling.

2.3 Mobile App

The mobile app was built using the Swift language, and can run in any iOS plat-
form. To structure the project, the MVC architecture (Model View Controller)
was chosen.

The RealmSwift framework [3] was used to build the communication be-
tween the app and the MongoDB server, to where all data was sent and read
from.

2.4 Web Application

To build the web application of the project, it was used the NodeJS runtime envi-
ronment [4]. It is an open-source, cross-platform, back-end JavaScript runtime
environment that executes JavaScript code outside a web browser. Node.js lets
developers use JavaScript to write command line tools and for server-side script-
ing—running scripts server-side to produce dynamic web page content before
the page is sent to the user’s web browser.

Alongside with NodeJS, it was used the Express framework [5], which is a
back-end web application framework for NodeJS. It is designed for building web
applications and APIs. For the front-end experience, it was used EJS, which
is a simple templating language that lets generate HTML markup with plain
JavaScript.

Heroku is a container-based cloud Platform as a Service (PaaS) [6]. It is used
to deploy, manage, and scale modern apps. This technology was chosen for be-
ing flexible and easy to use, offering the simplest path to deploying the web ap-
plication publicly.

3 Development

3.1 Voting Station

The voting station consists of a reinforced cardboard box that holds all the sen-
sors and actuators involved in the project: the conveyor belt, built out of LEGO
pieces and controlled via stepper motor, the gate servomotor, the fingerprint
sensor, the Raspberry Pi camera, the LCD display, the LEDs, the Raspberry Pi
Model 3B+ microprocessor and the 5V power supply.



Technical Report: ElectionPipa 9

3.1.1 Mechanical Structure

The mechanical structure was modelled using FreeCAD, and it was the first con-
tact of the group with 3D modelling. In it, the group could simulate the LEGO
pieces used to build the conveyor belt and draw the box, as seen in Figures 3 - 5.

Figure 3: Box - back view



Technical Report: ElectionPipa 10

Figure 4: Box - front view

Figure 5: Box - top view



Technical Report: ElectionPipa 11

With all the diagrams finished, began the construction of the fundamental
elements of the project. First of all, the conveyor belt was built and the motor in-
tegrated to the system, and the first tests were made to assure the system would
work, as seen in Figures 6 and 7. An important decision was made about the ma-
terials of the conveyor belt: as the ballots are lightweight and easy to transport,
the belt was built out of rubber bands instead of a file or other kinds of fric-
tion material, as the rubber bands provided enough friction to keep the paper in
movement once the vote detection process began.

Figure 6: Conveyor belt project



Technical Report: ElectionPipa 12

Figure 7: Conveyor belt built of LEGO pieces

The voting station was designed to be robust but portable, and to contain all
the elements required for its correct function. To attain all objectives and due to
ease of manipulation, the group used reinforced cardboard covered in contact
paper with enough room to fit all components mentioned beforehand to build
a box.



Technical Report: ElectionPipa 13

Figure 8: Built box - inside view

Figure 9: Built box - outside view



Technical Report: ElectionPipa 14

Figure 10: Built box - outside view

3.1.2 Hardware Project

For the hardware project and development, the diagram in Figure 11 was made
using TinkerCAD [7], to verify if there would be enough General Purpose In-
put/Output ports for every functionality. There was also a need to use USB ports
for the fingerprint sensor, for the numpad and for the ring light used to assist the
camera in detecting the ballot contents.



Technical Report: ElectionPipa 15

Figure 11: Hardware project

For the power supply distribution, a printed circuit board, as shown on Fig-
ure 10, was developed to join all positive and ground supplies in a single point.
In this board it is also possible to control the LCD contrast. All the wires were
split up according to their respective functions.

The stepper motor was set to half step mode and provided adequate torque
to move the conveyor belt in both directions. The LCD display worked according
to plan, but the downside is the small size. It is not possible to display a lot
of information at a given time and some messages were split in two or more
phrases. The 12V 5A power supply used is able to supply enough current for all
hardware components without risk of an internal problem.

3.2 Cloud Database

The modeling and creation of the cloud database had to take two important
things in consideration. First, due to the need of keeping the voter’s identity
anonymous, the database was projected in a way that no vote would be linked
to any voter. Therefore, the only information from the vote that is stored on the
cloud is its unique ID and the voted candidate selected on the paper.

The second important thing was making sure that the votes would only be
sent to the database after the election was completed, to prevent any kind of
fraud or improper access to the results before every vote was in fact, computed
and the election finished. Until then the votes are stored in a local file to prevent
being lost due to a power failure.

With all those issues in mind, the database was set up, according to Figure
12. It includes six collections: one for the administrators, which storages the



Technical Report: ElectionPipa 16

finger ID of the administrators; one for the election, including its schedule, one
for the votes, with their chosen candidate, the paper ID and the type of the vote
(valid, blank or null). Next there are the voters and the candidates collections,
storing the relevant information from those two groups; and a recount collec-
tion, in case a recount is asked for.

Figure 12: Database model

3.3 Mobile Application

The first step of the mobile application development was creating the UI/UX
design, for which was used the Skecth desktop software [8]. Sketch is a powerful
tool to prototype screens and build app mockups. Alongside with the screens,
the color palette and font style of the project were decided, as seen on Figure 13



Technical Report: ElectionPipa 17

Figure 13: IOS app design

Knowing what the app would look like and what screens we would have, it
was possible to build the class diagram, as shown on Figure 14. For this step, the
draw.io platform [9] was used.

Then, the coding part started, and the XCode IDE [10] was used to build
the iOS application with Swift. First, the visual part (screens and flows) of the
app were developed. With that, it was possible to create the models and classes
needed, and then finally implement the connection with the MongoDB [2] server.
This was the most challenging part, as the app needed to be able to read and
write data to the database to correctly enroll candidates, schedule elections and
enable recount mode. Despite that, MongoDB [2] provides the RealmSwift frame-
work [3] to ease this connection between the application and the server, and
therefore it was possible to establish a realm time communication between the
two with not so much effort.



Technical Report: ElectionPipa 18

Figure 14: IOS app class diagram

3.4 Web Application

The first step of the web application development was the prototyping of the
interface. It needed to be as user-friendly as possible, so the users were able to
navigate through the website without any struggle. To make that possible, the
front-end design and the user interface were made in a browser-based UI and
UX design application.



Technical Report: ElectionPipa 19

Next, with the design completed, the front-end of the application was cre-
ated with EJS. During this step, the main concern was to be as faithful as possible
to the designed prototype. With this task concluded, it was possible to start the
next part of the web development: the creation of the routes, linking the web-
site to the database, consuming it and displaying it on the browser, and finally
deploying the application.

Since NodeJS was the chosen technology for the development of the back-
end, it was very simple to connect the application to the database, as MongoDB
has a built in feature for Node applications. With the connection in the picture,
it was possible to seed the application with live data from the database, which
then would be displayed on the browser. For that to be possible, the routes were
developed so that each server request got the appropriate response – for each
functionality of the application. The screens of the web application can be seen
on Figures 15 through 19.

Figure 15: Web application home page

Figure 16: Web application schedule page



Technical Report: ElectionPipa 20

Figure 17: Web application real time page

Figure 18: Web application real time error page

Figure 19: Web application results error page



Technical Report: ElectionPipa 21

Figure 20: Web application results page

Finally, with all working together, front-end and back-end, it was possible
to deploy the application so that anyone could access the application on the
browser, through the correct URL.

3.5 Vote Detection

For the voting detection, image processing was used to identify the correct voter
choice. In order to have success on this task, two approaches were made: The
Red Bar Method and the Augmented Reality Method.

3.5.1 Red Bar Method

The first idea was called “Red Bar Method”. The first thing to do was the design
of the ballot with the candidates, the QR Code identification of the ballot and, in
this case, with a red bar as seen on the Figure 21.

After the design, the solution was implemented and tested. During the tests
the following problem appeared: “How to know the position of the chosen can-
didate label in different angles?” So to solve it the process was basically:

1. Detect all the circles centroids.



Technical Report: ElectionPipa 22

Figure 21: Ballot design

2. With the centroids and radius, the filled circle or circles (if there is any) was
detected too using the most predominant color in the circle bounding-
box.

3. Detect the red bar (or part of it) and it’s center.

4. Calculate and sort the distances of the centroids to the bar since the dis-
tance won’t change with the angle.

5. Check the position of the filled circle in the sorted circles list.

The parts 1, 3 and 4 of the process can be seen on Figure 22.

Figure 22: Vote position solution

Circle detection For the circle detection, a variant of the Hough Gradient Method,
which is a feature extraction method for shapes [11], for circle detection was
used. This implementation was made using OpenCV [12]. Since this method is
really sensitive and can be computationally expensive even with small details,
the team made some pre-processing. First the image was converted to gray-
scale so OpenCV implementation can use it and then the image was slightly
blurried using median blur so the image is smoother and since the circle is filled
with regular pen it avoid some false-positives that could occur.



Technical Report: ElectionPipa 23

Filled circle detection After the circles detection, the algorithm have the cen-
troids and the radius of each one, so using the circle bounding-box and Numpy
[13] the team was able to detect the most predominant color inside this bounding-
box, with black as predominant color meaning it’s filled, otherwise if white is the
predominant color the circle is not filled.

Bar detection In order to detect the bar, the team used the HSV color space
and made a mask to avoid multiple false-positives of bars and then applied the
variant of Hough Gradient Method for line detection.

After each part development, the whole process can be seen on Figure 23

Figure 23: Red bar approach process



Technical Report: ElectionPipa 24

3.5.2 Augmented Reality Method

The red bar method worked, but had some disadvantages. The main disadvan-
tages are the amount of processing to do it in real time on the Raspberry Pi, the
need of a perfect white lightning to detect and the need of a specifically red bar
to do the detection, so if the printer is missing red color the election is in dan-
ger. With those drawbacks, the team decided to spend some time to try this AR
method. After professors suggestion and a lot of research, the ArUco [14] seemed
to be exactly what the project needed to be simpler and faster.

In order to make it work, the first thing to do after thinking about the prob-
lem and realizing the steps needed, was to remake the ballot design, now with-
out the red bar and replacing the QR Code with the AR Tag, as can be seen on
Figure 24.

Figure 24: Redesigned ballot with AR Tag

The main advantage of the use of augmented reality on the project was the
ability to get the tri-dimensional axis (Figure 25) and the rotation of the tag in
relation to the camera, so with this information and some processing the algo-
rithm could rotate the image back, in a way that the ballot is always in the correct
position no matter the angle.

The process was similar to the previous approach, but some changes were
made:

1. Detect the AR Tag and rotate back the image.

2. Detect all the circles centroids.

3. With the centroids and radius, the filled circle or circles (if there is any) was
detected too using the most predominant color in the circle bounding-
box.

4. Check the centroids in the y-axis and determine the filled circle position.

The circle detection and filled circle detection were exactly like the previous
approach, the main difference was the AR Tag detection.



Technical Report: ElectionPipa 25

Figure 25: AR Tag detection and axis

AR Tag detection The AR Tag detection wasn’t too hard since the OpenCV li-
brary already have a great implementation for it, the harder part was to find the
rotation in relation to the camera. After some research about this topic, the team
had to calibrate the camera to calculate the particular matrix and distortion of
the camera used and then, with the rotation matrix, the algorithm could deter-
mine the angle in respect to each axis with a really good accuracy (the testing
videos can be seen on the project blog [15]).

After some tests, the second approach proved to be really faster, specially
because it doesn’t need to keep tracking the bar and calculating distances all the
time. Another point that helped on the performance was, since the second ap-
proach doesn’t need the RGB or HSV color space anymore, the gray scale was
the chosen one during the whole process, and clearly were more computation-
ally efficient.

With this second approach implementation, the final voting detection pro-
cess can be seen on Figure 26.

3.6 Power failure recovery

The system implements a state machine in which during state changes the new
state is saved on a file. The states are as following: 0 - normal flux, 1 - voter au-
thenticated, 2 - vote confirmed, 3 - recount mode, 4 - recount vote detected. At
each startup the system verifies the last saved state, if it was 0 there’s no recovery
action to be done, if it’s 1 it’s necessary to roll back the conveyor belt since it’s
possible there’s an uncounted vote in there and also it needs to have the previ-
ously authenticated voter unauthorized because they may have left the voting
station after the power failure. If the state was 2 the conveyor belt rolls forward
since it’s possible there’s a confirmed vote in there. After recovery actions from



Technical Report: ElectionPipa 26

Figure 26: Final voting detection process

state 1 and 2 the new state is 0. The recovery step for state 3 is to roll back the
conveyor belt and for state 4 is to roll forwards, both keep state 3 after recovery.
Since the system only saves votes in the database after the election has finished
it keeps them on a file during the voting process to avoid losing data during a
power failure.

3.7 Recount

When the administrator press the recount button on the app after the election
has finished they need to be authenticated on the voting station and insert each
ballot that was on the result’s box. The system checks each ballot identifier and
rejects votes that were not accounted for during the election or that already were
counted during the recount (duplicated ballots).

3.8 Tests

3.8.1 Fingerprint authentication

The system can handle enrolled voters and display a properly message. Some-
times the recognition take a while, but during all the project development all
matches were done correctly.

3.8.2 Conveyor belt

Several tests were done to define the best conveyor belt speed, looking to me-
chanical limitations. Besides that, the stepper motor control was adapted to fits
better the application.



Technical Report: ElectionPipa 27

3.8.3 Camera

The main problems with the camera was the illumination and focus, that com-
plicated the vote recognition. To solve the illumination problem, the team bought
a ring light and it was enough to solve the issue. Camera focus was solved with
the distance adjustment between the camera and the conveyor belt. Besides
that, it was necessary some tests to adjust manually the focus in the camera.

3.8.4 Numpad

The first numpad utilized by the team suddenly stopped working and was re-
placed by a new one.

3.8.5 Servomotor

The servomotor is used to control the lid, witch opens when the voters can insert
the vote. In initial tests the correct angles were found and there was no problem
in this control during all the project execution.

3.8.6 Vote detection

The tests involving vote detection and their results can be found in the Table 6.
The system allows the voters to cancel the vote in case of wrong detection or
change of mind.



Technical Report: ElectionPipa 28

Test Result
Valid vote
not de-
tected

After 5 failed attempts of detection the conveyor belt changes
direction and returns the vote.

Blank vote The ring light provides a good illumination inside the box,
but sometimes blank votes are not recognized as they
should. In cases of non detection, the conveyor belt changes
direction and the voter can repeat the voting process. If a
wrong detection occurs, the voter has the option to cancel
the vote.

Null vote Votes are detected as null if more than one circle is marked.
As the blank vote case, the illumination is a key to the cor-
rect detection and sometimes valid votes are detected as null
ones.

Vote upside
down

The AR-tag for the upside down is detected and the conveyor
belt returns the vote to the voters.

Valid vote
with wrong
detection

The voter can cancel the vote in case of wrong detection.

Table 6: Vote detection tests

3.9 Power failure recovery

The tests simulated power failures by unplugging the voting station from the
power outlet. It was repeated during different voting steps such as authentica-
tion, before and after vote detection and during recounting. The system was able
to recover from the power failure and proceed the voting or recounting without
losing any data.

3.10 Recount mode

The tests were done after an election scheduled end and consisted of the admin-
istrator using the app to enter the recount mode, having an administrator pass
the authentication and inserting ballots. The team tested not only the ballots
that were counted during the election but also duplicated and new ones. The
method worked as expected rejecting these ballots and only counting the ones
that had the identifier previously found in the voting time.

4 Difficulties

Throughout the development of the project there were some challenges and dif-
ficulties. With the COVID-19 pandemic still going on, the main challenge was
the gathering of the group members to do some manual-labor tasks, since it was



Technical Report: ElectionPipa 29

necessary to take as much precautions as needed, always trying to keep every-
one in the group safe during the execution of the project.

Alongside with all that, some other difficulties appeared during the execu-
tion. Already in the mechanical structure assembly, some problems with the
lighting took a lot of the group’s time to be solved. Due to the need of good light-
ing inside the ballot box, some original options were discarded since they did
not lit up the papers enough to be easily recognized by the camera. This prob-
lem was solved by changing the original light bulb to a small ring light, which
was able to fit inside the box and provide the necessary illumination for the sys-
tem.

Another great issue that appeared was the complexity of a QR Code identifi-
cation on the ballots. The group noticed that the processing time and the image
recognition step could be simplified and improved at the same time by changing
the QR Codes to AR Tags.

All those tasks took some more hours of development from the group, but
that was necessary to keep the project into its best performance, both by making
sure the lights inside the box were lighting up enough and by making the image
processing as fast and simple as possible.

5 Results

5.1 Final Results

With all the parts of the system working and fully tested together, it is possible
to say the results were in line with the expectations. The fingerprint sensor can
authenticate the voters and falls back when it is not possible, which leads to
the authentication through the numpad. The authentication communicates to
the rest of the system that it can keep going and the vote can be inserted and
processed.

Both the mobile app and the web application do their jobs in retrieving and
sending data to the database, allowing the election to be held and the results and
follow-up to be kept on track. Therefore, it is possible to say that the results of
the project were the ones the group expected to achieve at the moment of the
initial planning. The final assemble can be seen on Figure 27.



Technical Report: ElectionPipa 30

Figure 27: Final voting station

5.2 Budget

The budget of the project was very much around what the group expected to
spend and it can be checked on Table 7.



Technical Report: ElectionPipa 31

Item Quantity Unit Price (R$) Total Price (R$)
Raspberry Pi 3 Model B 1 350.00 350.00

Fingerprint sensor FPM10A 1 78.50 78.50
RPi Camera 1 40,00 40.40

Numpad 1 29,89 29.89
Backup Numpad 1 29.89 29.89
16x2 LCD Display 1 23.90 23.90

Servomotor 1 20.00 20.00
Step Motor 1 10.00 10.00

LED 3 1.00 3.00
Box 1 20.00 20.00

Conveyor Belt 1 20.00 20.00
Light Bulb 1 5.00 5.00
Shipping 1 50.00 50.00

Spare Components 1 200.00 200.00
Total 880.18

Table 7: Project budget

5.3 Schedule

Right from the beginning of the project, the group created a list of tasks that
would be necessary to be done along the development and the expected amount
of time each one of them would take. With that, it was possible to keep track of
the group’s progress while also registering all the hours of work spent. A sum-
mary of the project schedule can be checked on Table 8

Deliverable Expected Hours Worked Hours
Project Plan 6 8.3

Follow-up blog 5.1 1.5
Mechanical Structure Project 31 25.3

Hardware Project 92 82.2
Software Project 107 94.4

Hardware + Software Integration 57 89.5
Integration with other Software elements 60 50.5

Technical Report 27 27
Final Presentation 12 11

Total 397.1 389.7

Table 8: Project schedule summary



Technical Report: ElectionPipa 32

6 Conclusions

The project was a challenge to all the members of the group, mainly due to the
difficult scenario in which Integration Workshop 3 classes had to happen. With
the pandemic still going on, the team had to keep as much of the work in a re-
mote system as possible, which led to a strict time schedule.

Due to the detailed project planning and creation of a task schedule at the
beginning of the course, the group was able to take the project forward and
achieve its finals goals at the end. The development of Election Pipa improved
many skills of the members, and also made possible for the group to work on
something everyone was interested in. It is worth mentioning the soft skills this
projected developed on the team members, who had to work some of the time
remotely and some in person, with people who work on different things.

The development of Election Pipa, a paper-based election system, fully inte-
grated, with a branch of technologies involved, was a successful task. It brought
a lot of knowledge to the people involved in this work, and the results were in
agreement with the expectations.

References

[1] Adafruit Team. Adafruit optical fingerprint sensor. https:
//cdn-learn.adafruit.com/downloads/pdf/adafruit-optical-
fingerprint-sensor.pdf, 2021. [Online; accessed 27-August-2021].

[2] MongoDB Team. Mongodb. https://www.mongodb.com/, 2021. [Online;
accessed 27-August-2021].

[3] RealmSwift Team. Realmswift. https://cocoapods.org/pods/
RealmSwift, 2021. [Online; accessed 27-August-2021].

[4] NodeJS Team. Nodejs. https://nodejs.org/en/about/, 2021. [Online;
accessed 27-August-2021].

[5] Express Team. Express. https://expressjs.com/, 2021. [Online; ac-
cessed 27-August-2021].

[6] Heroku Team. Heroku. https://devcenter.heroku.com/, 2021. [Online;
accessed 27-August-2021].

[7] TinkerCAD Team. Tinkercad. https://www.tinkercad.com/, 2021. [On-
line; accessed 27-August-2021].

[8] Sketch Team. Sketch. https://www.sketch.com/, 2021. [Online; accessed
27-August-2021].

[9] Draw.io Team. Draw.io. https://www.draw.io/, 2021. [Online; accessed
27-August-2021].

https://cdn-learn.adafruit.com/downloads/pdf/adafruit-optical-fingerprint-sensor.pdf
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-optical-fingerprint-sensor.pdf
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-optical-fingerprint-sensor.pdf
https://www.mongodb.com/
https://cocoapods.org/pods/RealmSwift
https://cocoapods.org/pods/RealmSwift
https://nodejs.org/en/about/
https://expressjs.com/
https://devcenter.heroku.com/
https://www.tinkercad.com/
https://www.sketch.com/
https://www.draw.io/


Technical Report: ElectionPipa 33

[10] Xcode Team. Xcode. https://developer.apple.com/xcode/, 2021. [On-
line; accessed 27-August-2021].

[11] HK Yuen, J Princen, J Illingworth, and J Kittler. Comparative study of
hough transform methods for circle finding. Image and Vision Computing,
8(1):71–77, 1990.

[12] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[13] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gom-
mers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Se-
bastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer,
Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernán-
dez del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin
Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph
Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature,
585(7825):357–362, September 2020.

[14] Francisco Romero-Ramirez, Rafael Muñoz-Salinas, and Rafael Medina-
Carnicer. Speeded up detection of squared fiducial markers. Image and
Vision Computing, 76, 06 2018.

[15] Election Pipa Team. Election pipa blog. https://
delirious-rhubarb-e58.notion.site/Election-Pipa-
ee1d986b7caa4984a9de9ffcaecaa3d7, 2021. [Online; accessed 27-
August-2021].

https://developer.apple.com/xcode/
https://delirious-rhubarb-e58.notion.site/Election-Pipa-ee1d986b7caa4984a9de9ffcaecaa3d7
https://delirious-rhubarb-e58.notion.site/Election-Pipa-ee1d986b7caa4984a9de9ffcaecaa3d7
https://delirious-rhubarb-e58.notion.site/Election-Pipa-ee1d986b7caa4984a9de9ffcaecaa3d7

	Introduction
	Requirements
	Project overview

	Technologies
	Fingerprint Recognition
	Cloud Database
	Mobile App
	Web Application

	Development
	Voting Station
	Mechanical Structure
	Hardware Project

	Cloud Database
	Mobile Application
	Web Application
	Vote Detection
	Red Bar Method
	Augmented Reality Method

	Power failure recovery
	Recount
	Tests
	Fingerprint authentication
	Conveyor belt
	Camera
	Numpad
	Servomotor
	Vote detection

	Power failure recovery
	Recount mode

	Difficulties
	Results
	Final Results
	Budget
	Schedule

	Conclusions

