
Federal University of Technology – Paraná – UTFPR

Academic Department of Electronics – DAELN

Academic Department of Informatics – DAINF

Computer Engineering
Integration Workshop 3 (EEX23) – S71 – 2019/2

Technical Report
DLVR – A miniature driverless delivery system

Nicolas Abril – nicolasabril@alunos.utfpr.edu.br

Matheus G. Dias – matheusdias@alunos.utfpr.edu.br

Natan A. Junges – natanjunges@alunos.utfpr.edu.br

Álefe F. G. P. Dias – alefe@alunos.utfpr.edu.br

November 2019

Abstract

This document reports the creating of DLVR, a miniature driverless deliv-
ery system. It is a small and constrained version of an autonomous de-
livery system, that could potencially replace services like Uber Eats. The
system is composed of a vehicle, that moves across a small model city, de-
livering objects as requested by the user using the system’s mobile app. All
the information about deliveries, users, routes and location is managed by
a cloud server. This report details the development process as well as show
the end result, comparing it to the initially proposed solution.

1 Introduction

Due to the increase of traffic in cities, and to the fact that people have less and
less time, indisposed to leave their homes, delivery systems are becoming more
popular by the day. Made by drivers that work hours without stop, this system
usually creates problems, like a lack of employment contracts and poor regula-
tion. Looking to solve these problems, investment in autonomous vehicles has
increased and, although it has its own problems, it tends to be a safer and more
efficient solution.

Inspired by some attempts of replacing human-made deliveries like Starship
Technologies[1] and Amazon Scout[2] and by the structure of Duckietown[3],
this project aims to create a solution to a small scale version of this problem.
The solution proposed here consists of: A vehicle that carries the delivery and
is able to navigate through the city given a route; A server, that manages the de-
livery from begining to end, acting as the system’s central intelligence; A mobile
app that provides the system’s functionalities to the user; A model city, where the
vehicle will drive on, with streets and delivery locations, constraining the prob-
lem to a simplified and controled environment. Figure 1 shows a diagram with
the overview of the system’s main components and the environment in which
they interact.

1

Technical Report: DLVR 2

Figure 1: Overview of the system’s architecture

To make a delivery, using the app, the user first logs into their account, se-
lects the other user they want to deliver to, and provides their location. Then, the
server confirms the delivery and location with the second user, who must also
have the app, and selects a vehicle for the delivery. The server then calculates
and sends the route the vehicle must follow to reach the first location (the ori-
gin). By navigating through the city, the vehicle moves to the first location, where
the user will load the vehicle with the item to be delivered. The server confirms
the arrival with the user, allows the item to be loaded, and sends the vehicle to-
wards the second location (the destination). When the vehicle arrives, the server
goes through the same procedure, confirming the arrival with the user, allowing
the item to be removed, and finishing the delivery afterward. Finally, the vehicle
is sent back to its garage, where it waits for the server to send it a new route.

The server acts as a central intelligence, deciding, authorizing, checking and
logging each step of the system. The vehicle and the app are designed to be as
simple as possible, leaving as many actions as they can to the server. This in-
cludes all knowledge about the city’s layout and the route that the vehicle must
take. To store all this information, a complementary database server was used.
The server is hosted on the cloud and is accessible through the internet. For the
vehicle to be able to access the internet, it must first communicate using a dif-
ferent protocol with an intermediate device which in turn sends the message to
the server. This is due to the large amount of Wi-Fi signals around the univer-
sity, producing interference that make it impractical to establish a stable Wi-Fi
connection.

Lastly, the city has all the elements that the vehicle must be able to iden-
tify, placed in such a way to showcase all functionalities of the system. It has a

Technical Report: DLVR 3

reduced size that is small enough to fit inside the classroom.

1.1 Requirements

The requirements for this project were subdivided into four categories: the Ve-
hicle, the Server, the App and the City, each category then divided in functional
and non-functional requirements. Table 1 contains the main requirements for
each category.

2 Components and technologies used

This section details all the different technologies and components that were
used in the system.

2.1 Mechanics

2.1.1 Chassis

For the vehicle chassis the 2WD chassis was used. It comes with an acryllic
mount, with different holes to attach other components. It also comes with two
5V DC motors, two speed encoder disks, two wheels that can be attached to the
motors, and one loose wheel that goes on the rear of the chassis, increasing sta-
bility.

2.1.2 Support structures

Support structures were made for the different components that needed to be
placed in the chassis. These supports were handcrafted with MDF wood or 3D
printed with ABS plastic.

2.1.3 Container

The container is made with a repurposed wooden box. A servomotor that latches
to a small piece of wood was assembled on the side of the box acting as the lock.
The item detection sensors are also attached to the sides of the box.

Figure 2 shows the modeling of the vehicle’s mechanics.

2.1.4 City

The city was made with puzzle piece-shaped EVA mats arranged in a 2m x 2m
square. Colored tape was added to represent the roads and cardboard makes the
walls of the locations. Figure 3 shows the modeling of the city.

Technical Report: DLVR 4

Figure 2: Vehicle Mechanics Model

2.2 Hardware

2.2.1 Raspberry Pi 3B

The vehicle’s microcontroller is a Raspberry Pi 3B[4], a low cost single-board
computer. It comes with a quad-core 1.2GHz processor, 1 GB of RAM, 40 GPIO
pins, WiFi, a camera interface, and hardware SPI and PWM.

Two cameras were used, one looks downwards and the other looks straight
ahead. The first one is the Raspberry Pi Camera Module v2, which interfaces
Raspberry Pi using flat cable, allowing the usb ports to be free. The second cam-
era is the Koup GZE877 PC Camera, a small webcam that one of the team mem-
bers already had.

2.2.2 Main board

The vehicle has a main circuit board that connects all the electronic components
and the Raspberry Pi. When possible, the components were integrated into this
board, otherwise they connect to it with wires.

2.2.3 Optocouplers and H Bridge

Connecting the Raspberry Pi to the motors is a board with 4N25M optocouplers
to isolate the motors from the digital systems. The signal from the optocouplers
then goes to an LM298 H Bridge that controls the direction and speed of the
motor.

2.2.4 Infrared sensor

Infrared sensors were used to detect if there is an item inside the container. They
are made with one infrared LED and one infrared phototransistor. When an ob-

Technical Report: DLVR 5

Figure 3: City modelling

ject obstructs the light, the voltage on the phototransistor drops.

2.2.5 HC-SR04

The HC-SR04 is an ultrasound sensor that detects objects from 3 to 400 centime-
ters of distance. It is used to detect obstacles and avoid colisions.

2.2.6 LM393 IR Module

This module has an LM393 comparator with a infrared LED and phototransistor
pair. When coupled to a motor with a speed encoder disk, this module can be
used as a speed encoder.

2.2.7 nRF24l01+

The nRF24l01+ is a wireless communication module that works in the 2.4GHz
range. It is used as part of the communication between the vehicle and the
server. It comunicates with the Raspberry Pi using an SPI interface.

2.2.8 Arduino Nano

Arduino is a single-board microcontroler with low cost and low processing power.
An Arduino Nano is used as part of the communication between the vehicle and
the server. It’s purpose is to relay the data coming from the nRF24l01+ to its
serial port. Another Arduino is used to control the traffic lights.

Technical Report: DLVR 6

2.2.9 RGB LEDs

RGB LEDs are used as traffic lights.

2.2.10 Logic Level Shifter

The logic level shifter is a integrated circuit that allow communication between
different logic voltage levels. It’s used to interface the ultrasound (5V) with the
Raspberry Pi (3V3).

2.3 Software

2.3.1 OpenCV

OpenCV[5] is a free and open-source library for computer vision. It is used to
detect the visual elements and navigate the city.

2.3.2 ArUco

"ArUco is an OpenSource library for camera pose estimation using squared mark-
ers." [6] We use it’s fiducial AR tags as unique markers for the city locations.[7][8]
AR tags are used in imaging systems for augmented reality applications. They
serve as points of reference or measure, allowing the imaging system to calcu-
late the camera’s position and orientation relative to physical markers.

2.3.3 AWS

The servers are hosted on the cloud using Amazon’s AWS[9]. The system uses
two servers, one for the database and one for the processing. AWS was chosen
because it has a free trial and is simple to use.

2.3.4 WebSocket

WebSocket is a full-duplex layer 7 communication protocol that operates over
a TCP connection. Using the Python library pywebsocket, it provides a simple
and efficient way of exchanging asynchronous messages with the server.

2.3.5 Godot

Godot[10] is a free and open-source game engine. It was used to build the mo-
bile app. Godot was chosen because it provides easy methods for building graph-
ical interfaces and for showing graphics, and also because the team already has
some experience with it.

Technical Report: DLVR 7

3 Development

This section details the development of the project. Section 3.1 presents the
mechanical design of the robot.

3.1 Mechanics

The development of the project started with the mechanical parts of the vehicle,
as all the other physical parts depended on it. Overall, these parts were simple to
model and create, with the main problem being fitting everything in the smallest
space possible. Then the city was modeled and assembled taking into account
the size of the vehicle.

3.1.1 Vehicle’s Chassi and Support Structures

The vehicle’s chassi was assembled to allow the placing of the support struc-
tures. Some of the support pieces were 3D printed, like the main container sup-
port and ultrasound’s support, while the rest were created with MDF slabs, ei-
ther 3mm or 5mm thick depending on the use. For the pieces that needed to be
glued together, silicon glue and hot glue were used. Then, the ultrasonic sensor
and the camera suport were attached with screws, while the others parts were
attached with double sided tape.

One major change to the original model had to be made. Because a second
camera had to be used and the first camera had to be raised to look from a more
downwards angle, another supporting piece had to be made to accomodate for
these two components.

Figure 4: Assembled vehicle’s chassi

Technical Report: DLVR 8

3.1.2 Container

Some holes were made in the wooden box to put the detection sensors and the
servo motor. A hook was attached to the servo’s arm so that when the motor
rotates it hooks to a small piece of wood that was put on the box’s cover, locking
it.

Figure 5: The finished vehicle

3.1.3 City

Using 16 pieces of 50x50cm EVA mats, the base of the city was layed down. Un-
fortunately, because the EVA mats overlap when they are connected, the city
ended smaller than planned, with 1,85x1,85m, and because of this some loca-
tions had to be removed. Different colors were used to mean different things,
blue means the edge of the road and so the vehicle is not allowed to go over it,
green tape marks where it is possible to make a turn, and yellow represents the
separation of two lanes, where the vehicle is only able to cross if it is coming
perpendicularly.

To act as traffic lights and to simulate GPS, some poles were built containing
an RGB LED and an AR marker. The LEDs are wired underneath the EVA mats
and connect to an Arduino Nano, which controls their color, red or green.

The AR tags were also put in all the possible destinations of the vehicle, as a
way to signal that it has reached its destination. These tags are held by a card-
board wall. Each location has in its back a piece of carboard and they also sur-
round the city, isolating it from the background. Originally, each location would
have carboard not only on its back but on the sides as well. However, it was too

Technical Report: DLVR 9

difficult for the vehicle to turn inside them and they only served an aesthetic
purpose and so were removed.

Figure 6: A picture of the finished city, with all the AR tags placed

3.2 Hardware

After the vehicle’s mechanics were built, the hardware was constructed. Three
boards were custom-made while the other components simply needed to be
connected.

A board was made to binarize the signal from the infrared sensors. The main,
infrared and optocoupler boards were made using perforated universal board.
However, the final result is adequate. Because these boards concentrate the con-
nections, they make it possible to change components without much effort, if
needed.

To power up the hardware, two power sources were used. One, a 14.8V LiPo
battery, goes through a voltage regulator reducing it to around 7V, and powers
the DC motors and the H bridge. This battery is commonly used in robots for its
reliability and high discharge rate. To power all the other hardware components,
a 10000mAh 5V 2.4A power bank was used.

The last step to make the vehicle work was to develop its software.

3.2.1 Hardware-Interfacing Software

To test the hardware as it was being created, the software that drives the basic
functionalities of the Hardware was developed in parallel. The first library cho-
sen to control the GPIO functions was WiringPi, but it lacked hardware-based

Technical Report: DLVR 10

timers which are necessary to control the motors. The library was thus changed
to the aforementioned pigpio.

3.2.2 Movement Control

An essential part to this project is making sure the vehicle is able to move within
the road. So, it was necessary to make a good control system, enabling the ve-
hicle to move straight and do precise turns. To accomplish this, the encoder’s
response is filtered to remove the noise and then passed on to a proportional
controller. The proportional controller was projected using the Tustin method,
converting a continuous-time controller in the Laplace domain to a discrete-
time controller in the Z domain through the bilinear transform. Because the
motor’s response is non-linear it was hard to properly adjust the controller and
make the vehicle both move straight and do turns, but after some tinkering it
was done. The proportional constant of the controller is Kp = 0.001.

3.2.3 Computer Vision

To be able to move within the roads, the vehicle first needs to know where the
roads and the crossings are. It also needs to respect the traffic rules and not hit
anything. To handle all these requirements a computer vision system capable of
detecting all those requirements was developed. It has three main components,
the traffic light detector, the AR marker detector, and the streets and crossings
finder.

Detecting traffic lights is very simple, being accomplished by a simple color
mask and then analyzing the found blobs’ position and size. The AR markers
are detected using ArUco in just one line of code. At first, QR codes were going
to be used, but after some testing they were found to be very hard to detect at a
distance. Both these parts use the camera that looks ahead. This camera was not
originally going to be used, but it was very hard to look both at the street signs
and at nearby streets at the same time, so a USB WebCam was added.

Finding where the streets and the crossings are was a lot harder. The ap-
proach used was to first find where the tape is and then convert that to a geom-
etry problem by calculating the real world position of the tape using projection
mathematics. Then, knowing these positions, the vehicle calculates where the
center of the streets should be. By intersecting and joining these streets, the
vehicle then creates a graph which is passed onwards to the robot’s central in-
telligence.

Before deciding on this solution, many other approaches were tested, like
detecting corners and analyzing image slices. All the alternatives were not ade-
quate for this problem, which differed from others on constraints like scale and
processing power. This solution had inspiration from some other solutions but
is overall custom-made for this problem.

Technical Report: DLVR 11

3.2.4 Vehicle’s Intelligence

All the other software parts work separately, but they need to be tied together
and respond properly to the server’s orders. This was done in a module named
the ’intelligence’ of the vehicle. This module coordinates all the rest of the soft-
ware and defines the main loop of the vehicle. The program works in a cycle of
receiving a message from the server, acting on it when necessary, and then doing
one vision and movement cycle, finishing with an update of the vehicle’s status
to the server.

The intelligence is also responsible for deciding how to move, using the in-
formation from the vision, the movement control and the sensors to try to fulfill
the server’s orders. It decides if the vehicle should move and where it is going,
and then acts on the decision by sending the new movement to the control mod-
ule.

3.3 Server

The server is the backbone of the entire system, serving as a communication
bridge between the app and the vehicles, and coordinating all the delivery pro-
cess.

The server was developed using the Python programming language, due to
its ease to handle asynchronous processes, the amount of documentation avail-
able, the knowledge base of the team and its popularity. The server API is very
similar to the RESTful API standard, using URIs to represent each entity of the
system. But it is different as it also represents in the URIs the actions performed
on the entities (something that resembles the object-oriented paradigm).

The database used was MySQL, a traditional relational database manage-
ment system, that uses SQL for the queries. It was chosen due to its ease of use,
reliability and popularity. The relational database model was chosen because,
as the system and the information that it manages are not too complex, and the
volume of data is not big, it is the simplest model viable.

3.4 App

The application is the main interaction tool between the system (server + robot)
and the user. Through the application the user can signup in the system, request
and accept deliveries and check the status of the delivery robot and the cargo.

The application was developed using Godot Game Engine version 3.1, using
its native GDScript programming language, a language with syntax very similar
to the Python language. Godot has a very intuitive interface for graphic develop-
ment which allowed the application to develop much faster than Android Stu-
dio. Godot’s ability to export applications to various platforms (such as HTML5
and PC) allowed for easy application testing and debugging.

Technical Report: DLVR 12

3.5 Communication

The system has three parts that need to communicate with each other: the app,
the server and the vehicle.

The server is only accessible through the internet, so our first idea was to
have the vehicle connect with WiFi directly with the server. However, because
the university WiFi is hard to work with, specially on embedded devices, an in-
termediate device that relays the data between the vehicle and the server was
used. This computer communicates with the vehicle using an Arduino with an
nRF24l01+ module and with the server through the internet. The app connects
to the internet using whichever means the user chooses, be it WiFi, 4G or some-
thing else.

To communicate with the server, after some failed attempts at using plain
HTTP, the WebSocket protocol was chosen for its simplicity when establishing
bidirectional asynchronous communications. It is used both in the intermediate
device and in the mobile app.

4 Problems

Along the development of the project, some problems were faced.
On the city, the tapes that were first used did not stick well to the EVA mats

and reflected the ambient light directly in to the camera. The blue one was
changed to blue masking tape and the green to hand-painted masking tape. The
yellow tape worked better so it was still used.

On the hardware, the boards ended very dense with connectors and adding
that to the methods chosen to build them and some initial design mistakes, a lot
of time was spent building and fixing them.

5 Results

The final result of the project was not, unfortunately, able to fulfill all the planned
requirements. The obstacle recognition and avoidance had to be dropped. The
main difficulties found were a gross misjudging of how long it would take to do
what we didn’t know how to do, a lack of efficient communication, and a stub-
borness to change the original plan. Another problem that negatively affected
the work done was poor collective time management. It often happened that a
task would be delayed and the person that was going to do the next one would
get lost because they depended on work that was not yet completed.

Nonetheless, all the functionalities that the team decided were the vital parts
of the project were successfully implemented. Table 2 shows the initially time
it would take to complete the project compared to the actual time taken. The
activities were divided in 3 blocks that corresponded with the time they were
expected to be done, which of course differed from when they were actually ex-

Technical Report: DLVR 13

ecuted. In this table, it is visible that the second checkpoint took a lot longer
than expected, and that caused all the activities from the third checkpoint to be
delayed, and some abandoned altogether. The total time spent was very close
to the the error margin because the project was dimensioned to, at worst, take
almost all of the team’s free time. Each checkpoint corresponded to around 3
weeks of work, for a team of four, during the 3 months of project development.

For almost every part developed on a task, a test was built to ensure that it
was working reasonably well. Having a known point where a component was
working helped a lot to find any errors, as there was something to compare. Fig-
ure 11 shows four pictures of parts of the vehicle’s vision, taken as part of the
vision’s tests. Finally, Figure 12 shows some screens of the mobile app.

Regarding the money spent building the project, the final cost was very sim-
ilar to the initially estimated cost. While about 15 items were not thought of in
the starting budget, the cost of other things was lower than expected, and some
things were replaced for a cheaper alternative. And considering that the team
had already had or could borrow most items, the actual cost of the project was
reasonably low, at only R$307.63 .

6 Conclusions

This project was able to complete its main objective of creating a driverless de-
livery system. Although some of the more specific objectives weren’t achieved,
like avoiding obstacles, the essential parts were.

This was a great opportunity for the team to learn about working on big-
ger projects, with problems that are not usually encountered in other courses,
like managing a team, working on a strict time limit, and having to plan and
schedule activities for a longer period of time. In this project, most of the knowl-
edge taught in the Computer Engineering course was used, with subjects rang-
ing from electronics, to computer vision and databases.

Aside from finishing all the proposed functionalities, some future projects
are possible after this one. The first idea would be to work on a bigger scale,
with a larger city, larger robots and more varied environment. Another possible
branching would be to bring the vehicle to the real world, focusing on move-
ment through real environments, both indoors and outdoors. In this project,
the server is responsible for most of the processing; Another rendition of this
project could be focused on having a more intelligent vehicle. The ultimate goal
would be to build a system like Amazon Scout and Starship Deliveries.

Overall, making this project helped the team to mature a lot and develop
many different abilities, in a way that would be very hard without working on
something like this project.

The details of the development of the project, as well as a video of its final re-
sult, can be found at <deliveryrobot.wordpress.com> and <youtu.be/wU_OaUOvt88>.

Technical Report: DLVR 14

Acknowledgement

We would like to thank our professors, João Alberto Fabro and Heitor Silvério
Lopes, for all the help and guidance provided, and professor Bogdan T. Nassu
for his help with the computer vision, and everyone at LASER (Advanced Lab on
Embedded Systems and Robotics - laser.dainf.ct.utfpr.edu.br) for their help and
support.

References

[1] Starship Technologies. https://www.starship.xyz/.

[2] Amazon. Meet scout. https://blog.aboutamazon.com/transportation/meet-
scout.

[3] Duckietown. https://www.duckietown.org/.

[4] Raspberry Pi Foundation. Raspberry pi 3 model b.
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/.

[5] OpenCV. https://opencv.org/.

[6] A.V.A Universidad de Córdoba. Aruco. https://www.uco.es/investiga/
grupos/ava/node/26.

[7] Sergio Garrido-Jurado, Rafael Muñoz-Salinas, Francisco Madrid-Cuevas,
and Rafael Medina-Carnicer. Generation of fiducial marker dictionaries
using mixed integer linear programming. Pattern Recognition, 51, 10 2015.

[8] Francisco Romero-Ramirez, Rafael Muñoz-Salinas, and Rafael Medina-
Carnicer. Speeded up detection of squared fiducial markers. Image and
Vision Computing, 76, 06 2018.

[9] Amazon. Amazon web services (aws). https://aws.amazon.com/.

[10] Godot Engine. https://godotengine.org/.

Technical Report: DLVR 15

Table 1: The main requirements of the system

Server – Functional Requirements
FR01 Allow users, vehicles and deliveries to be registered
FR02 Manage all steps of the delivery, updating the app of its status
FR03 Choose a vehicle to perform the delivery, sending it the routes
FR04 Send the vehicle to the garage if it has no deliveries to make

Vehicle – Functional Requirements
FR05 Be able to move on the streets, but only along the route given by server
FR06 Be able to identify traffic lights, obstacles and location markers
FR07 Inform the server about it’s status and the delivery’s status

Vehicle – Non-Functional Requirements
NFR01 Detection of the city’s elements must be done with computer vision
NFR02 Be able to carry a load of 200g, no larger than a common cellphone
NFR03 Due to environmental limitations, the vehicle-server communication must not use WiFi

App – Functional Requirements
FR08 User sign up
FR09 User’s email confirmation

FR010 Password reset
FR011 Sign in
FR012 Delivery request, specifying sender’s location and receiver’s email
FR013 Delivery response, specifying receiver’s location
FR014 Vehicle position and status tracking
FR015 Close and send vehicle to destination
FR016 Open vehicle’s container to retrieve the delivery
FR017 Close the vehicle’s container and finish the delivery
FR018 Sign out
FR019 Profile update
FR020 Account deletion

App – Non-Functional Requirements
NFR04 The app must run on Android
NFR05 Arrival confirmation must be done by showing the screen to the vehicle

City – Non-Functional Requirements
NFR06 Have Streets, blocks, traffic lights, garages and delivery locations
NFR07 Have markers that identify locations within the city
NFR08 Have obstacles that partially or completely obstruct some roads

Technical Report: DLVR 16

Figure 7: Main board schematics

Technical Report: DLVR 17

Figure 8: Schematics of (a) optocoupler board, and (b) IR sensor

Figure 9: Schematics of (a) optocoupler board, and (b) IR sensor

Technical Report: DLVR 18

Figure 10: Entity-relationship diagram of the database

Table 2: The estimated time to complete the project and the actual time taken

Activities Estimated Estimated + 30% Error Margin Time taken
First Checkpoint 104 hours 135.2 hours 134.28 hours

Second Checkpoint 161 hours 209.3 hours 302.68 hours
Third Checkpoint 180 hours 234 hours 87.75 hours

Total 465 hours 604.5 hours 602.01 hours

(a) (b) (c) (d)

Figure 11: Pictures of the vehicle’s vision (a) What the frontal camera sees with Ar
marker and traffic lights identification, (b) What the downwards camera sees, with the
found tapes, (c) The found tapes with undistortion and in the correct place in real world,
and (d) The final graph representing the streets.

Technical Report: DLVR 19

(a) (b) (c)

Figure 12: Some of the app’s screen (a) Account creation screen (b) Main screen, (c)
Side bar

Table 3: The estimated and the actual cost of the project

Vehicle City Total
Estimated cost buying all parts R$715.19 R$177.00 R$892.19

Estimated cost with pre-owned parts R$106.50 R$147.00 R$253.50
Actual cost buying all parts R$764.04 R$202.28 R$966.32

Actual cost with pre-owned parts R$140.35 R$167.28 R$307.63

