
Federal University of Technology - Paraná – UTFPR

Academic Department of Electronics – DAELN

Academic Department of Informatics – DAINF

Computer Engineering
Integration Workshop 3 (EEX23) – S71 – 2023/1

Technical Report
AutoFleet - A solution to prevent accidents

caused by drowsiness drivers

Eduardo Piaceny Ribas – eduardoribas@alunos.utfpr.edu.br

Hadryan Salles – hadryansalles@alunos.utfpr.edu.br

Ianca Polizelo – iancapolizelo@alunos.utfpr.edu.br

João Victor Laskoski – laskoski@alunos.utfpr.edu.br

June, 2023

Abstract

Brazil is a country that heavily uses the road network as its main mean
of transport. Therefore, there are many drivers and also fleets that use this
means. Often, transport workers have long hours of work, without taking
adequate breaks for rest, which ends up causing several traffic accidents
due to the fact that they lose attention and even fall asleep at the wheel.
With that in mind, this project seeks to implement an intelligent solution
that can prevent traffic accidents caused by drowsiness. Through a device
installed in the vehicle, it is possible to monitor the driver’s face and hands
to ensure that he has a smooth and safe trip. GPS and accelerometer also
keep track of vehicle position, speed and acceleration. If the driver hap-
pens to get sleepy, the device will emit sound alerts with the intention of
waking him up. Furthermore, all collected data is periodically sent to a
cloud server so that the fleet manager can take care of his employees and
make better decisions.

1 Introduction

Traffic accidents caused by drowsiness present a concerning problem within the
brazilian traffic context, with substantial implications for road safety and public
well-being. According to available data, car accidents related to sleeping while
driving have been alarmingly prevalent in Brazil. In fact, a study conducted
by the Brazilian Association of Road Traffic Medicine (Associação Brasileira de
Medicina de Tráfego - ABRAMET) [1] revealed that drowsiness contributed to
approximately 42% of all recorded traffic accidents in Brazil.

Thus, the idea of this project is to help in minimizing this problem, and im-
prove the working conditions of drivers by building a device that is able to mon-

1

Technical Report: AutoFleet 2

itor them and detect when they are presenting symptons of drowsiness, making
it possible to issue alerts to wake them up.

In addition, the device has other features such as: detecting whether the
driver’s hands are touching the steering wheel, measuring vehicle speed, posi-
tion and acceleration, while storing all the periodically captured data during the
trip.

1.1 Overview

Figure 1 shows the Block Diagram of the system. As can be seen, the device
comprehends an embedded system which monitors all the sensors and actuate
on the sound. On top of that, using network connection, the device communi-
cate with a webserver sending data packets with the collected data from sensors.
Besides storing the data, the webserver also provides a website to visualize trip
details.

Figure 1: Block Diagram

The embedded system comprises a Raspberry Pi3 B linked to multiple com-
ponents. These components include two USB cameras affixed to the car’s sun
visor, providing visibility of the driver’s face and the steering wheel. Addition-
ally, there is a GPS for tracking the vehicle’s location during the entire trip, a
3-axis accelerometer to measure acceleration changes, and a speaker to emit
sound alerts, ensuring the driver is awakened if they happen to present drowsi-
ness while driving. Lastly, the device is equipped with an SD card to store data
locally in cases of connection loss, aiming to send this data once the connection
is established.

The website serves two user groups: Drivers and Managers, each offering
distinct features. For Drivers, the platform enables them to initiate a trip by
logging in and selecting a designated button, notifying the server to associate
all subsequent data with that specific trip. On the other hand, Fleet Managers

Technical Report: AutoFleet 3

have the capability to retrieve and analyze comprehensive trip histories from all
drivers within the fleet.

2 Project Specification

The project was separated into three main components, Mechanical, Hardware
and Software, with their requirements presented in the sections 2.1, 2.2 and 2.3
respectively. It was also necessary to create anti-requirements that are presented
in the section 2.4.

2.1 Mechanical Functional Requirements

• MFR1 - The device’s mechanical structure must attach together the mi-
croprocessor, cameras, GPS, accelerometer and buzzer in a box of dimen-
sions 18x7x3 cm, made of MDF (Medium-Density Fibreboard) wood where
the electronic boards are fixed.

• MFR2 - The device’s mechanical structure must provide safety from the
sun for all electronic components using a thermal insulating material such
as wood.

• MFR3 - The device’s mechanical structure must be solid to protect the
components against accelerations caused by holes in the highway or other
shakes in the vehicle.

• MFR4 - The face camera must be positioned so that it has a clear vision of
the driver’s face.

• MFR5 - The hand camera must be positioned facing below so it has a clear
vision of the steering wheel.

• MFR6 - Both camera cables must be connected to the device without block-
ing the driver’s vision of the road.

• MFR7 - Both cameras must be fixed in the car sun-protector using clip.
• MFR8 - Both camera cables must be fixed in the side of the car using

double-sided tape.
• MFR9 - The device mechanical structure must be positioned on the car’s

panel without blocking the driver’s vision of the road, using an 11-inch
smartphone support for this.

2.2 Hardware Functional Requirements

• HFR1 - The hardware must detect acceleration changes in the vehicle with
precision of at least 0,1 m/s2 in three axes, using an MPU-6050 accelerom-
eter sensor with ±4g range.

• HFR2 - The hardware must be turned off whenever the vehicle is turned
off to make possible to detect the moments when the hardware is turned
off.

Technical Report: AutoFleet 4

• HFR3 - The hardware must emit sound alerts using a buzzer when the
output of the image processing of the driver is “drowsy”.

• HFR4 - The hardware must emit sound alerts using a buzzer when the
output of the image processing of the steering wheel is “hands-off”.

• HFR5 - The hardware must store data packets containing values of speed
and alerts (such as hands-off and drowsiness) of at most 4 kb in an external
device attached to the embedded system.

• HFR6 - The hardware must be able to store up to 24 hours of data-packets
in an micro SD-Card attached to the embedded system.

• HFR7 - The hardware must detect vehicle position coordinates using a
GPS NEO 6M sensor with frequency of at least 1 update per second and at
least 10 meters of precision.

• HFR8 - The hardware must take at least two pictures of the driver’s face
per second.

• HFR9 - The hardware must take at least one picture of the steering wheel
per second.

• HFR10 - The hardware power supply will be the vehicle’s 12V USB port.
• HFR11 - The hardware must establish Wifi connection with a smartphone

hotspot in order to send data packets.
• HFR12 - The pictures must be taken using USB infrared cameras to allow

visibility in low-light environments.
• HFR13 - The hardware must use a Raspberry Pi3 microcomputer.

2.3 Software Functional Requirements

• SFR1 - The embedded software must use neural network and computer vi-
sion in the driver’s image to determine the rate of drowsiness of the driver
and if driver hands are on the steering wheel.

SFR1.1 - The embedded software must use the open-source library
Drowsiness_Detector to detect driver drowsiness.

SFR1.2 - The embedded software must use the open-source library
OpenCV to detect driver’s hands.

• SFR2 - The computer vision techniques must rely on the shape of the
driver’s mouth and eyes to determine the rate of drowsiness.

• SFR3 - The embedded software must capture images of the driver’s face
using the camera and process them with at least 2 frames per second.

• SFR4 - The embedded software must capture images of the steering wheel
using the camera and process them with at least 1 frame per second.

• SFR5 - The embedded software must read inputs from the accelerometer
and GPS sensor at least once per second.

• SFR6 - The embedded software must use readings from the GPS sensor to
calculate the vehicle speed.

• SFR7 - The embedded software must create:
SFR7.1- A hands-off alert whenever the driver hands are not detected

Technical Report: AutoFleet 5

in the steering wheel camera processing.
SFR7.2 - A drowsiness alert whenever the rate of drowsiness of the

driver is detected over 0.5 in the neural network output.
SFR7.3 - An acceleration alert whenever the acceleration readings are

over 2 m/s2 in any axis (disregarding gravity force).
SFR7.4 - A speed alert whenever the vehicle speed is over 100 km/h.

• SFR8 - The embedded software must register the speed and the position
entry of the vehicle with a frequency of 10 entries per minute.

• SFR9 - All alerts and speed entries must have a date and timestamp in
GMT-3.

• SFR10 - The embedded software must send all alerts and speed entries to
the cloud server when the internet connection is established.

• SFR11 - The embedded software must buffer all alerts and speed entries
in device local memory when the internet connection is not established.

• SFR12 - The embedded software must send all buffered alerts and speed
entries to cloud server after establishing a connection.

• SFR13 - The embedded software must use JSON format to send data pack-
ets to the cloud server.

• SFR14 - The embedded software must use JSON file to store buffered alerts
and vehicle speed.

• SFR15 - The embedded software must keep a file with last update time
of the firmware, to identify when the device is turned off by checking last
update time.

• SFR16 - The embedded software must use Python programming language
in the firmware.

• SFR17 - The embedded software must use Raspbian operational system.
• SFR18 - The cloud server software must provide a database to store all

alerts and speed entries.
• SFR19 - The server software must be deployed to some free web server

host such as Google cloud server.
• SFR20 - The server software must use Django framework to instantiate

database and dashboard pages.
• SFR21 - The server software must use SQLite database backend.
• SFR22 - The dashboard software be accessible through a website requiring

login/password.
• SFR23 - The dashboard software must provide CRUD page to register and

edit driver profiles.
• SFR24 - The dashboard software must provide a page to visualize driver

profile with history of trips.
• SFR25 - The dashboard software must provide a page to inspect trips, with

trip duration and information about alerts and speed over time.
• SFR26 - The dashboard software must provide a page to the driver start

and finish his current trip.
• SFR27 - The embedded software must send at least 5 packets per minute

Technical Report: AutoFleet 6

containing acceleration, GPS, Drowsiness and hands-on-steering-wheel
data.

2.4 Anti-Requirements

• AR1 - The drowsiness detection will not work if the driver is using a hat,
mask, sunglasses, or any other wearable which blocks the camera from
viewing the driver’s face.

• AR2 - The hands-off detection is not guaranteed to work if the driver is
using gloves or any other wearable which covers the hands.

3 Development

This section describes the process of the project development, explaining tech-
nical details as well as difficulties. Further diagrams can be seen in the project‘s
blog [2].

3.1 Mechanical Structure

Development started with the design and creation of the mechanical diagrams
using the OnShape [3], which is an cloud-native product development platform
that delivers professional-grade CAD capabilities. The resulting diagram can be
seen in Figure 2. The box device was build using MDF(Medium Density Fiber-
board).

Figure 2: Mechanical Schematics

Technical Report: AutoFleet 7

The main features that the mechanical structure must have are to hold all
the physical components present in the hardware safely, but it must be small
enough not to block the driver’s view, and also protect them from solar radiation,
preventing the system from overheating.

The final result can be seen at Figures 3 and 4.

(a) (b)

Figure 3: The box device built. (a) Closed box (b) Open box

3.2 Hardware Design

All hardware modules are connected to the microcontroller, as shown in the
block diagram in Figure 1. The two system cameras are connected using USB
ports, while the buzzer, GPS and accelerometer are connected using GPIO pins
and are grouped into a PCB, as shown in the schematic diagram of Figure 5,
which was modeled using the EasyEDA tool [4]. Additionally, the system is pow-
ered using the vehicle’s 12V power supply.

Based on the schematic diagram of Figure 5, a board with the design of the
PCB shown in Figure 6 was produced. Figure 7 contains the final result of con-
necting the boards shown in Figure 5.

3.3 Computer Vision

Getting inspiration from Drowsiness_Detector [5], the developed drowsiness de-
tection algorithm makes use of OpenCV library [6] to capture images from the
webcam. After capturing the image, a pre-trained facial detector is applied on
the image, using dlib [7]. The output landmarks include right and left eye points,
which can be used to create bounding boxes for right and left eyes. Then a

Technical Report: AutoFleet 8

Figure 4: Mechanical structure fixed on the car

Figure 5: Circuit schematic

heuristic is applied, for the given bounding boxes, the drowsiness level is de-
termined by how small is the aspect ratio of the bounding boxes, meaning that
the eyelids are closer together.

Technical Report: AutoFleet 9

Figure 6: PCB design

Figure 7: Final result of connection between PCB and Raspberry PI.

This approach depends on the perspective of the camera, so if the person is
rotated and not facing the camera straightly, the results will vary. For example, if
the driver is looking down, its eyelids become close together when looking from
the camera perspective, so it would alert as a drowsiness event. Beyond that,
a drowsiness event also depends on a threshold value, which may need to be
adjusted depending on the person using the device.

The result of this algorithm can been see in the Figure 8.
For the hands-off detection algorithm, two main components are combined:

Technical Report: AutoFleet 10

(a) (b)

Figure 8: The bounding boxes of the eyes created in the algorithm. (a) Eyes are open,
indicating normal state (b) Eyes are closed, indicating drowsy state

the MediaPipe library [8] to detect hands in the image and the Hough Transform
[9] to detect the circle of the steering wheel. Both hands bounding boxes are
calculated using the joints points of the hands, then, an overlap test is performed
testing the intersection between hands bounding boxes and the steering wheel
circle.

The result of this second algorithm can been see in the Figure 9.

(a) (b)

Figure 9: The bounding boxes of the hands and the circle of the steering wheel. (a)
Hands touching the steering wheel (b) One hand-off the steering wheel

3.4 Firmware and Backend

Both the Firmware and Backend are written in Python. Some libraries were used
to help create firmware for hand detection [8], drowsiness detection [5], GPS
[10], to facilitate I2C communication with the accelerometer [11] and to facili-
tate pin control Buzzer GPIO [12]. The firmware starts by dispatching different
threads for sensors, emitters and the streamer, each of them having different

Technical Report: AutoFleet 11

update frequencies.
For the sensors: accelerometer updates once each 2 seconds and GPS up-

dates once each 5 seconds. For the cameras: drowsy detection update twice per
second and hands-off detection once per second. Speaker and buzzer updates
once each second. Beyond that, the speed measures are derived from the GPS
readings by calculating the offset from two consecutive locations and dividing
by the time.

Lastly, in a separate thread, there is a streamer that is responsible for fetch-
ing data captured with the sensors/cameras and sending them to the webserver.
This streamer has an update frequency of once each 15 seconds. For accelerom-
eter and speed data, the streamer only sends the maximum readings, meaning
that only the most important of the samples is sent. Additionally, the streamer
is responsible for storing packets locally if something wrong happens during the
packet transmission, like loss of connection. With that, all the buffered pack-
ets are sent to the webserver in batches of 100 packets once the connection is
stablished.

3.5 Website

Providing more details about the manager and the driver interaction with the
website, a manager has permissions to perform CRUD operations on Trips, De-
vices and Drivers, as well as being able to analyze data collected from trips (a
manager cannot manipulate data collected from trips so that it cannot be cor-
rupted). Figure 10 shows the screens where the manager can perform CRUD
operations on driver data, the process is similar for Devices and Trips data.

(a) (b) (c)

Figure 10: Driver creation screen (a), driver modification and deletion screen (b) and
driver list screen (c).

On the other hand, a driver can view, start and end his trips as shown in
Figure 11. When starting a trip, the trip data packages (named trip history) are
collected and stored until the driver ends the trip. A Trip History record contains
date and time data, GPS, speed, acceleration, indicators of the driver’s drowsi-
ness state and hands off the wheel.

Technical Report: AutoFleet 12

Figure 11: Driver trip control screen.

Thus, with the trip packages collected, the manager can inspect the trip,
viewing the packages which contains date, time, GPS coordinates, speed (km/h),
Acceleration (x, y, z) (m/s2), absolute 3D acceleration subtracting the gravita-
tional acceleration, hands state and drowsy state as shown in Figure 12. It’s im-
portant to note that the state is a number which indicates what occurred in that
packet as seen in the Table 1.

Table 1: states for hands states and drowsy states.

Value Hands State Drowsy State
-1 if camera error / initializing if camera error / initializing
0 if no hand detected on steering wheel if face not detected
1 if one hand detected on steering wheel if not drowsy
2 if two hands detected on steering wheel if drowsy

Finally, it’s also possible to check the trip path visually on a map, as shown
in Figures 13 and 14.

4 Results

The team was able to develop a prototype that met 98% of planned require-
ments, not completing the requirement regarding night vision. Despite this sin-
gle unfulfilled requirement, the team achieved satisfactory results when tried to
detect when a driver is falling asleep while driving.

In the end, the prototype is capable of detecting drowsiness status, alerting
the driver when necessary, detecting when the hands are touching the steering
wheel, storing the data generated during the trip and sending it to the cloud

Technical Report: AutoFleet 13

Figure 12: Trip history data.

Figure 13: Example of a trip history map showing the driver path.

Figure 14: Labels of the driver path pins.

through wifi communication. All this using a small device and a website that
works satisfactorily.

4.1 Budget

For the project, it was projected to have a budget about R$200 to R$250 per
member of the team, therefore a total budget of R$800 to R$1000. Table 2 shows
all components bought and their price, the total cost was R$1096 which is slighty
higher than the previewed amount.

4.2 Schedule

The development time for the project was 9 weeks. Table 3 shows an overview of
the entire schedule, noting that Estimated Hours include the 30% extra hours.

The full sheet can be viewed at [13].

Technical Report: AutoFleet 14

Table 2: Budget

Amount Component Price (R$)
1 Raspberry Pi3 B 586
4 Webcams 210
1 Accelerometer 23
1 GPS 45
1 Buzzer 8
2 Memory Card 78
1 Smartphone support 30
1 MDF Wood 38
1 Wood glue 23
1 Stiletto 25
1 Speaker 30
Total 1096

Table 3: Schedule

Deliverable Estimated Hours Hours Worked
Project Charter 19:30 15:20
D1: Blog Site 16:54 15:30
D2: Mechanical Designed 24:42 20:30
D3: Hardware Designed 67:36 44:30
D4: Software Designed 78:00 50:00
D5: Integration 62:24 70:00
D6: Overall Integration 62:24 55:00
TR: Technical Report and Video 48:06 68:00
Total 379:36 338:50

5 Conclusion

The team faced many challenges during this project. At the beginning the hands
detection was thought to be a physical sensor in the steering wheel, such as
piezo or heartbeat sensor. This approach would be more precise and required
less processing. But it is illegal to modify the steering wheel with cables. Instead,
computer vision seems a better solution. Using only one camera for this, com-
puter vision was not able to check if the hands were really touching the steering
wheel, since this requires a 3D camera. When the hands are above the steering
wheel but not touching it, the algorithm also detect as the hands were touching.

Another big problem faced during this project was about night vision cam-
era. Normal webcam have a physical IR filter that blocks it from capturing in-

Technical Report: AutoFleet 15

frared light. So, the first approach was to remove this filter from 2 webcams, but
it did not work. Consequently, one requirement could not be fulfilled.

Despite the many challenges, the team was able to overcome several of them
while growing and learning from all the mistakes made at all steps of the devel-
opment. And at the end, the project was a success with the major components
working reasonably well and within expectations.

It‘s important to note that the planning step was essential to this project,
especially the risk analysis plan, as without it and the backup plans for it, the
project might not have been concluded with success.

References

[1] Portal UOL. Mais de 40% dos acidentes de trânsito acontecem por
sonolência, afirma a abrame, 06/09/2019. https://autopapo.uol.com.
br/noticia/mais-de-40-dos-acidentes-de-transito-acontece-
por-sonolencia-afirma-a-abramet/.

[2] Team AutoFleet. The autofleet blog, 2023. https://www.notion.so/
AutoFleet-5ed9cc1781e6449abe93defdd03e8c42.

[3] Onshape. Onshape, 2012. https://www.ptc.com/en/products/
onshape.

[4] EasyEDA Team. Easyeda, 2023. https://easyeda.com/about.

[5] garcelling. Traffic monitoring on rpi, 2021. https://github.com/
garceling/Traffic-Monitoring-on-RPI.

[6] OpenCV Team. Opencv, 2023. https://opencv.org/about/.

[7] Davis E. King. Dlib, 2023. http://dlib.net/.

[8] Google. Mediapipe, 2023. https://pypi.org/project/mediapipe/.

[9] OpenCV Team. Hough circle transform, 2023. https://docs.opencv.
org/3.4/d4/d70/tutorial_hough_circle.html.

[10] Pynmea2 Contributors. pynmea2, 2023. https://github.com/Knio/
pynmea2.

[11] Mark M. Hoffman. Smbus, 2023. https://pypi.org/project/smbus/.

[12] Ben Nuttall, Dave Jones, et al. gpiozero, 2023. https://gpiozero.
readthedocs.io/en/stable/.

[13] Team AutoFleet. Integration workshop 3 - schedule, 2023.
https://docs.google.com/spreadsheets/d/1l-1csUGbnr5T9_
vFxL78IYjI2QxsqIY9ozo_I9Vc4Bo/edit#gid=0.

https://autopapo.uol.com.br/noticia/mais-de-40-dos-acidentes-de-transito-acontece-por-sonolencia-afirma-a-abramet/
https://autopapo.uol.com.br/noticia/mais-de-40-dos-acidentes-de-transito-acontece-por-sonolencia-afirma-a-abramet/
https://autopapo.uol.com.br/noticia/mais-de-40-dos-acidentes-de-transito-acontece-por-sonolencia-afirma-a-abramet/
https://www.notion.so/AutoFleet-5ed9cc1781e6449abe93defdd03e8c42
https://www.notion.so/AutoFleet-5ed9cc1781e6449abe93defdd03e8c42
https://www.ptc.com/en/products/onshape
https://www.ptc.com/en/products/onshape
https://easyeda.com/about
https://github.com/garceling/Traffic-Monitoring-on-RPI
https://github.com/garceling/Traffic-Monitoring-on-RPI
https://opencv.org/about/
http://dlib.net/
https://pypi.org/project/mediapipe/
https://docs.opencv.org/3.4/d4/d70/tutorial_hough_circle.html
https://docs.opencv.org/3.4/d4/d70/tutorial_hough_circle.html
https://github.com/Knio/pynmea2
https://github.com/Knio/pynmea2
https://pypi.org/project/smbus/
https://gpiozero.readthedocs.io/en/stable/
https://gpiozero.readthedocs.io/en/stable/
https://docs.google.com/spreadsheets/d/1l-1csUGbnr5T9_vFxL78IYjI2QxsqIY9ozo_I9Vc4Bo/edit#gid=0
https://docs.google.com/spreadsheets/d/1l-1csUGbnr5T9_vFxL78IYjI2QxsqIY9ozo_I9Vc4Bo/edit#gid=0

	Introduction
	Overview

	Project Specification
	Mechanical Functional Requirements
	Hardware Functional Requirements
	Software Functional Requirements
	Anti-Requirements

	Development
	Mechanical Structure
	Hardware Design
	Computer Vision
	Firmware and Backend
	Website

	Results
	Budget
	Schedule

	Conclusion

