Federal University of Technology - Parand — UTFPR
Academic Department of Electronics — DAELN
Academic Department of Informatics — DAINF

Computer Engineering
Integration Workshop 3 (ELEX22) — S71 —2024/1

Technical Report
Ash: the table tennis ball fetcher

Alfons Andrade - alfons@alunos.utfpr.edu.br
Jodo Vitor Caversan dos Passos - joaopassos@alunos.utfpr.edu.br
Guilherme Gomes Barboza - guilhermebarboza@alunos.utfpr.edu.br
Gustavo Valente Gulmine - ggulmine@alunos.utfpr.edu.br
Matheus Diniz - matheusdiniz@alunos.utfpr.edu.br

June 2024

Abstract

The ASH table tennis ball fetcher project is a robot developed to catch table
tennis balls in a controlled environment (training court) autonomously.
This paper presents the development, including the mechanical design,
hardware implementation, and software development. The mechanical
structure includes a chassis, a motion system, and integration with a vac-
uum tube for ball collection. The electronic design addresses the power
supply, motor control, and peripheral connections. It features a custom
Raspberry Pi shield and ASH’s docking base circuit that is used as a charg-
ing station and a place to return the fetched balls. The software compo-
nent includes embedded firmware and an Android mobile application for
user interaction. The firmware manages tasks such as Bluetooth commu-
nication, odometry for tracking the robot’s position, ball detection using
computer vision, and static object detection. The mobile application en-
ables command transmission and status monitoring via an interface, en-
suring smooth operation and real-time updates. The ASH project pro-
vides an autonomous ball collection solution for table tennis ITTF (Inter-
national Table Tennis Federation) courts [1].

1 Introduction

As with any other sport, table tennis requires a lot of practice to master. Since
precise movements are so important during matches, training sessions usually
involve hundreds of movement repetitions, so it becomes possible to fine-tune
them. That implies hundreds of table tennis balls being used and scattered
around the training area after each exercise. This is usually not a problem when
training in big groups since the task of picking up the balls can be separated
among all of the individuals, but for small groups or even someone training
alone with the help of an automated ball launcher, picking up hundreds of balls

Technical Report: Ash - The table tennis ball fetcher 2

can get tiring and time-consuming. In this context, automating the ball col-
lection process could improve the dynamism of training sessions and allow the
athletes to enjoy their rest time without worries.

1.1 Proposed solution overview

The proposed solution to the problem, presented in Figure 1, is ASH, an au-
tonomous robot capable of identifying table tennis balls within the play area
and collecting them. The complete solution will also include a docking base
and a mobile application.

ﬁ_

Obstacles y—
1 (o))<
Sensors
<

Table Tennis TR N

R) S .

1

N .

- - € LELELELIL) . —r

@ Main controller Mobile Application
(Raspberry Pi)

N @ 5B

Charger

ASH

(Docking Base

IR LED

S Container door Wheels motors Vacuum suction

Figure 1: Proposed solution system block diagram

To autonomously navigate the play area without concerns, ASH needs to be
capable of detecting table tennis balls and obstacles and the location of its dock-
ing base, which doubles as a charging station, using the IR LED on top of it. To do
so, ASH is equipped with cameras and multiple sensors that will allow it to col-
lect a lot of data regarding the environment. Using computer vision algorithms,
ASH identifies where and how far the balls in front of it are located so it can fetch
them using its exclusive vacuum suction system, storing the collected balls in a
container. Since a lot of processing power is required to perform all of these
measurements while also controlling the robot’s movements, ASH is equipped
with a Raspberry Pi 5 as its main processor.

Controlling the robot’s operation with the specially designed mobile appli-
cation will be very simple for the user. Connecting to the robot wirelessly through
Bluetooth or Wi-Fi protocols, the mobile application serves as a control cen-
ter for the robot, offering users the ability to start, pause, or stop an operation,
schedule a start, and even track, in real-time, how many balls ASH has collected
as well as what it is currently identifying in the environment. This user-friendly

Technical Report: Ash - The table tennis ball fetcher 3

interface puts the power in your hands, making the operation of the ASH robot
a seamless and enjoyable experience.

Technical Report: Ash - The table tennis ball fetcher 4

2 Project Specification

The requirements for this project comprise an extensive list of features neces-
sary for the robot to operate correctly, as well as the rules that define its opera-
tion. All functional, non-functional, and anti-requirements defined were further
divided among each part of the project (mechanics, hardware, firmware, and
mobile application), with the latter also including environmental restrictions
that ensure correct operation. Due to the complexity of the project, the com-
plete requirements list ended up with a total of more than 150 requirements,
which are available in full extent online at ASH Notion blog, with some of the
most important functional requirements being presented at Table 1.

Technical Report: Ash - The table tennis ball fetcher 5

Req. Description

MFR10 The robot must have guide flaps to lead table tennis balls to the suction tube entrance.

MFR11 The robot must have a storage container able to store at least 10 balls and no more
than 15.

MFR13 The robot’s vacuum ball collection system, including the storage container and suc-
tion tube, must be as best sealed as possible to prevent pressure loss and ensure opti-
mal suction efficiency.

MFR15 The robot must have the camera looking forward and at an angle of 85 to 95 degrees
relative to the ground.

MFR16 The robot must have 2 wheels connected to the motors and one swivel wheel, to better
distribute the weight and still have the maneuverability needed.

MFR22 The return base must have magnets on its wall so that the robot can know if it has
parked.

MFR23 The return base shall have a 25cm tall tower with a led controlled bulb on top to act as
alandmark.

HWFR1 The robot must be powered using two 12V rechargeable battery packs to split the cur-
rent consumption and be mobile.

HWFR4 The robot’s power supply system must be capable of supplying 5V to the main con-
troller and the peripherals.

HWEFR5 The robot’s power supply system must be capable of supplying 6V to the wheels mo-
tors and the container door servo motor.

HWFR14 | Therobot must be able to measure the distances in all four directions (front, back, left
and right sides) to help with obstacle detection.

HWFR15 | The robot must detect if a ball has correctly entered and exited the tube.

HWFR18 | Therobot charger connection must prevent damage when connected to unsupported
chargers.

HWFR19 | The return base must have a signaler recognizable by the robot using only the camera

SFR1 The robot must autonomously navigate in environments in agreement with the im-
posed environmental restrictions.

SFR1.1 The robot must recognize objects within its operational area.

SFR1.7 The robot must autonomously navigate to the return base to unload the stored balls
or wait to be recharged.

SFR5 The robot must communicate data to the user interface, including battery levels, sen-
sor readings, ball position, and collection count.

UIFR1 The user interface must allow the user to start and end the current robot cycle imme-
diately.

UIFR7 The user interface must provide a Field Of View estimation map with identified balls.

Table 1: Main project requirements. Source: Authors (2024). | FR-Functional Re-
quirement | MFR-Mechanical Functional Requirement | HWFR-Hardware Func-
tional Requirement | SFR-Software Functional Requirement | UI-User Interface
Functional Requirement |

The environmental restrictions for the ASH table tennis ball fetcher project
ensure correct operation within typical training environments. According to the
International Table Tennis Federation (ITTF) Statutes, the play area must be en-
closed by surrounds about 75 cm high, with a dark-colored background and no
bright light sources. The floor must be non-reflective, non-slippery, and level.
Training environments typically have compact court sizes, approximately 9m
long by 4m wide, compared to the official 14m by 7m dimensions. The project
uses only white table tennis balls with a diameter of 40mm and a weight of 2.7g,

Technical Report: Ash - The table tennis ball fetcher 6

as specified by the ITTE These restrictions guide the design and operation of the
robot to ensure it functions effectively in realistic training settings.

3 Development

The project development was performed on three fronts, comprising the design
and implementation of the four main pillars of the proposed solution, as seen in
section 2. The first was the mechanical structure, presented in subsection 3.1.
The second was the hardware design and assembly, detailed in subsection 3.2.
Finally, the last front was software development, which included firmware and
mobile application development, as further discussed in subsection 3.3.

3.1 Mechanical Structure

The mechanical structure of the ASH project encompasses three primary com-
ponents: the structural framework, motion system, and integration with the vac-
uum tube system. This section provides an in-depth analysis of the proposed
mechanical framework and its alignment with the project’s functional requisites.

The primary structure of the robot is engineered as a resilient chassis ca-
pable of housing all essential components. Balancing lightweight construction
with durability, the chassis aims to deliver strength and mobility. The structural
considerations of the robot embrace aspects such as:

* Strength and Durability: The chassis has been engineered to withstand
self-inflicted impacts and collisions, safeguarding internal components
from damage in compliance with [MFR1].

* Weight Distribution: Central placement of the batteries between the wheels
(IMFR2]) and positioning as close to the ground as possible ([MFR3]) work
to establish a low center of gravity, bolstering stability.

* Mobility: Designed to attach and fix two DC motors for the 68 mm wheels
and the swivel wheel below the second container for robot movement.

* Vacuum Motor Integration: Design to seamlessly integrate with the vac-
uum motor system to ensure efficient suction performance.

The robot’s vision system is equipped with a forward-facing camera posi-
tioned at an optimal angle between 85 and 95 degrees relative to the ground to
provide a clear field of view for navigation and ball detection.

The robot’s three-wheel configuration, featuring two drive wheels and one
swivel wheel, is designed to optimize weight distribution and maneuverability.

All internal components, including the battery, vacuum motor, and other
electronics, could be securely housed within the robot framework, ensuring pro-
tection from external elements and impacts.

Technical Report: Ash - The table tennis ball fetcher 7

The Figures 2,3,4 and 5 presents a series of visual representations illustrating
the conceptual design made on design software (left) and the actual 3D-printed
results of ASH’s mechanical structure (right).

(a) 3D Design (b) 3D Printed

Figure 2: Left view. Source: Authors (2024)

(a) 3D Design (b) 3D Printed

Figure 3: Front view. Source: Authors (2024)

Technical Report: Ash - The table tennis ball fetcher 8

(a) 3D Design (b) 3D Printed

Figure 4: Upper view. Source: Authors (2024)

(a) 3D Design (b) 3D Printed

Figure 5: Isometric view. Source: Authors (2024)

The return base serves as a docking station for the robot, incorporating key
features. It includes a ball storage basket, a charging circuit, parking assistance
utilizing magnets to interact with the robot’s Hall sensor and an antenna with
an infrared LED that is recognized by ASH’s vision system. Additionally, the re-
turn base is designed to handle IMU (Inertial Measurement Unit) errors by zero-
ing the IMU once the robot parks, ensuring accurate navigation for subsequent
tasks.

The return base was crafted using a plastic case and a custom-cut PVC an-
tenna to accommodate the infrared feature, ensuring precise tailoring to the
robot’s requirements. See Figure 6.

Technical Report: Ash - The table tennis ball fetcher 9

(a) Front view ASH’s Base (b) Left view ASH’s Base

(c) Upper view ASH’s Base (d) Isometric view ASH’s Base

Figure 6: ASH’s Base views. Source: Authors (2024)

3.2 Hardware

In order to provide all of the functionalities defined in the requirements, the de-
signed hardware solution for the ASH project had many hurdles to overcome.
Considering the high power consumption of the robot’s internal components
(mainly RaspBerry Pi and the motors), it became necessary to have a dedicated
and intricate power supply system inside it, capable of supplying power on mul-
tiple voltage levels and protecting the internal components from damage. On
top of that, supplying and controlling four different motors at two different volt-
age levels required ASH to have a dedicated motor driver module, which is re-
sponsible only for these functionalities. Furthermore, all of the peripherals re-
quired to ensure full functionality for the robot made it necessary to create a
dedicated Raspberry Pi shield to organize all of the main controller connections
better. Finally, the hardware solution for ASH also included a docking base,
housing an infrared LED for recognition and a fixed 12V, up to 20A, power supply

Technical Report: Ash - The table tennis ball fetcher 10

that would double as the default charger for the robot’s batteries.

Robot

——>| Raspberry Pi

lavs
Docking Base
EY
Raspb Pi .
aspberry Pi v
Docking Base Supply USB.C Raspberry i | ool
Circuit Shield
cable
Legend:
v sv| V]
—> Power
ud Data
Electrical 12V Power | 12v Charging fizv Robot Power [sv Motors Control || HHbridge
Network Supply cable Supply [V module
i [l i
v Y
Servo Motor
Battery Packs Relay Module + FmMm ‘Wh%I
Vacuum Motor otors

Figure 7: System electric/electronic block diagram. Source: Authors (2024).

The final system-level electric/electronic design can be seen at Figure 7, high-
lighting the relationship between the major system components. The purple
blocks represent the four designed PCBs that solve the aforementioned hurdles,
as further explained in subsections 3.2.1 to 3.2.4. The hardware design descrip-
tion concludes with a brief presentation of ASH’s peripherals in subsection 3.2.5.

3.2.1 Dockingbase

The Docking base circuit, whose schematic is presented in Figure 8, is relatively
simple. It consists of a 3W infrared power LED that is turned on/off according
to the current state of the circuit. If a basket is connected to the base, the con-
nection on the microswitch will be closed and the LED stays on to signalize it.
If not, an NE555 IC configured as an astable oscillator will make the LED blink
with a period of one second at approximately 50% duty cycle.

+12v
11 +12V

v +12V e
Conn_01x02 u2 i\
é LN+ QuT+ 3 +ler ez
2 4 o
W= @dr= TaF1100nF 5wt il
e \j Ny 3W IR Power LED

Microswitch
GND

-

+12v GND R
2R2 3w
D2
ﬁé%w D3 ¥ 1N4002
ol 1N4002 o
B 3 s 1/ @i
" 2 q l IRLZ44N

)

2
ﬁl |75Cv
10nF
4
oND +12v<——A(R

GND

Figure 8: Docking base schematic. Source: Authors (2024).

Technical Report: Ash - The table tennis ball fetcher 11

Input/Signal Connectors

2

L (mcsnsy

>1_T g

A ST ET

L S] IR/Hall Sensors
o s
Raspberry Pi 40—pin connector
3 ut
1 i 33]
P! 5 . .
a Ty Te.
f

FE T 2
JF_SENSOR 1} {IR_SERSOR 2]
IR SENSOR A} —3=0 conspry IPSEMSORZE—S—=0 ooy o

GPIOLA(TID)

PIDS(SCL)
xo)

1045(%40)

UemieER] 1 cPioty GPILe(PCH_CLE)
32 TUseHo)13 cpiozy anbfi

GHD_S GHD_S
US 2-ECHO 23 picz2 2pl023|
B

BPIOZ4|

S S EcHD
24 spiouisn) cpiozs|
e te) GPioa(cen) 24

E
g L

Tt e

o
cPIoon_sn) crios(in_sc) 28
cPios g

,,NJ;U <
spice, ELECDN 10
&2 GProia(eurns) a0 s al s

GPIDID(ACHFS)
GPIn2s

i il
GniLs
s
Ultrasonic Sensors Motors
o o
m—;—T JS
5 5 33
usd B 5] s I
—LVL —“_<L US 3ECHD. 1
z
o s WIOTORAFEEDBACEL e
s e aLs (.. HOTOR A FEEDBACK 2|—2—= Hotori-Encoder
- OlR A —
s anis
s s ans Bik B —i 112
Terip—g— Hators ctrl
33 =
el 2 VH_ETRL
us2 v
s 4 =
& o WOTF_E FEEDEACE 11— i
anis N anbs & HiOTaR_& FEEDBACK 3 Watar& Enceder
2 2 J7_'»_
s Gl s 5

Figure 9: Raspberry Pi connector shield schematic. Source: Authors (2024).

3.2.2 RaspberryPi Connector Shield

The second designed hardware component was the Raspberry Pi Connector Shield,
presented in the schematic at figure 9. This module is responsible for grouping
up signals to facilitate connections to other modules and providing the connec-
tors to each of the peripherals. In order to alleviate the Raspberry Pi’s power
consumption, all peripherals that operate at 5V are connected to a power input
connector so that they can be supplied directly by ASH’s power supply system.

3.2.3 Motor drivers module

The motor drivers module shown in Figure 10 packs the driver circuits for the
four motors designed to be inside the robot. It operates at three different volt-
ages: 3.3V for the Raspberry Pi control signals, 6V for the front wheel and servo
motors, and 12V for the vacuum suction motor.

Technical Report: Ash - The table tennis ball fetcher 12

Input/Supply connectors| Front wheels motors

v

el

1
2 Output Supply_6Y.

aNBsY

Figure 10: ASH motor drivers module schematic. Source: Authors (2024).

Each one of the motors is controllable using this module in different ways:

* The servo motor control is the simplest of the three, with the signal pass-
ing through an optocoupler and going directly to the motor itself.

e The vacuum motor is controlled directly by a PWM signal coming from
the Raspberry Pi, switching the IRLZ44N MOSFET transistor to control the
state of the motor. Since the current peak from the motor can be really
high, a big capacitor was added in parallel to the battery.

* The front wheel motors can be controlled in two ways, using an external
1298 H-bridge module. If the control is performed using a PWM on the
enable pin and the direction is set, a NOT gate is provided, so it’s possible
to control the direction using only one input signal. On the other hand, if
the control is performed only using the direction pins, a jumper must be
added to the enable pins on the H-bridge, and the NOT gate output can
be ignored.

3.2.4 Power Supply

Lastly, the Power Supply module, presented at Figure 11, is the most complex
circuit developed for the ASH project. It can detect whether a charger has been
connected to the robot and if the polarity on this charger is correct. That, paired
with a fuse and a varistor tied to the charger connector, allows this design to
protect the internal circuitry from overcurrent, overvoltage, or reverse polarity.

Technical Report: Ash - The table tennis ball fetcher 13

Power connector

12vs

i
BarreLack Switch Lo
. 154 Fyce

RELAVA_DUTPUT RELAY_CTRL
o

3
2

7 ToonF
RVL
L1 20k 25008 o

ooz
DS

DS

Charger Connected

1218

s
u M5 [RERTERD—2— 12 12es
U" RELAYCTRL 3 _ Relay2 Cirl - 1 N
s RGeS COMECTED REGVZOUTPUT] 2 13 0000t
s 5 Relz.ou
Relay 3
o
12v82
ADC 1 . e
2 4 2 i
FEOTETRD 5~ foags.c [FEETP D [o
5V, " s = ouT- [+
= 5 R14 NG5 L2596 Nodule @
2l -~ crmeee comecies oy
SC>—3iscL Al{BBRI LEVEL P i
@Im R s " - Battery_Pack 2
Slioor a3 bt :
5 2 s o s
B aLRT Relay3_Output
TS ADS1115_Module - i s [BP2_LEVEL

o

Output/Control pins

o
L
L
2 < Susaly 5V Serre
<
v

Figure 11: ASH Power supply system schematic. Source: Authors (2024).

Since the default charger provides a fixed 12V output, it was necessary to de-
sign the reverse polarity protection to minimize the voltage drop; otherwise, the
batteries could not be fully charged. That was achieved using a relay setup to
decouple the batteries from the charging connector unless charging is required.
The relays control is performed using MOSFETs to switch the relays states de-
pending on four inputlogic signals (RASP_ON, NEED_RECHARGE, IN_BASE and
CHARGER_CONNECTED), connecting the batteries to the charger only if:

1. In case the main processor is on (RASP_ON = HIGH),the connection will
happen only when the robot is docked in base (IN_BASE = HIGH) and the
main processor signals it needs to recharge (NEED_RECHARGE = HIGH).

2. In case the main processor is off (RASP_ON = LOW), the connection will
happen only when a charger is connected with the correct polarity.

The power supply system also packs in an ADS1115 analog-to-digital con-
verter to measure battery levels and the presence of a charger, an LM2596 step-
down voltage regulator module, responsible for supplying 6V to the motors, and
an XL4015 step-down voltage regulator, that supplies 5V to the Raspberry Pi and
the peripherals, all of which are connected/soldered directly in the board.

3.2.5 Peripherals and utilities

The complete hardware design for ASH includes multiple off-the-shelf periph-
erals to fulfill many of its requirements as plug-and-play as possible. A total of

Technical Report: Ash - The table tennis ball fetcher 14

13 peripherals are connected to the main controller to perform these tasks, with
them being:

* [2x] Infrared Obstacle Sensor module: Coupled at the start and end of the
collection tube to identify if a ball has correctly entered and exited it.

¢ [4x] Ultrasonic Sensor module HC-SR04: Each sensor is fixed at one of
the four sides of the robot, allowing it to detect the presence of obstacles
close to it.

* [2x] Motor Encoders: Each wheel motor is directly coupled to an encoder
module, allowing the robot to measure the rotation on each wheel to help
with precise movement and minimize errors.

e [2x] IMX219-83 Cameras: Two independent cameras integrate a single
module and are connected directly to the Raspberry Pi’s CSI interfaces.

They are the robot’s " eyes, " being used for all computer vision function-
alities.

e [1x] ICM20948: Also part of the IMX219-83, this I2C module packs an ac-
celerometer, gyroscope, and magnetometer and is used to improve angle
and movement detection.

* [1x] Hall-effect sensor: A rather simple magnetic field detector is used to
identify if the robot is close/coupled to the base.

* [1x] ADC-1115 Analog-to-digital converter: An [2C module is used to mea-
sure both batteries’ voltage levels and verify if a charger is correctly con-
nected.

Considering all that was presented in this section, the final internal hardware
assembly of the ASH project is represented in the Figure 12.

Technical Report: Ash - The table tennis ball fetcher 15

Figure 12: Robot internal hardware assembly diagram. Source: Authors (2024),
using images from [2], [3], [4], [5], [6], [7], [8] and [9].

3.3 Software

The software was divided into two main parts: the embedded software for con-
trolling the robot and the mobile application for the user interface for command
transfer and process monitoring. This section will present each of these parts.

3.3.1 Firmware/Embedded Software

For better visualization of the software architecture, figure 13 shows the de-
signed class diagram for the firmware.

Technical Report: Ash - The table tennis ball fetcher 16

Mair
1 | Haskscheduler: TaskScheduler
-bluetoothTask: BluetoothTask
1 | -wifiTask WifiTask
+mainMQueue: Queue
+main{)
1
Tasks
1
1 1 l’
BivetoothTask WifiTask ControiTask TaskScheduler
I o devi - _camera: IMX219Cam -peripheralsTask PeripheralsTask
DtDevice: Bluetooth _g:;cealﬁggg _peripheralsMQueue: Queue ¥——— 10 -controllerTask: ControllerTask
~controlMQueue: Queue :comrg\MQ‘u:‘uue Queuue
+BluetoothTask() +BluetoothTask() -peripheralData: PeripheralDali peripheralsMueue. Queue
+~BluetoothTask() +~BluetoothTask()
+routine() +routine() +PeripheralsTask() +TaskScheduler()
r +receive() +~PeripheralsTask(} +~TaskScheduler()
1 +send() “+routine() +scheduleTasks()
1
1
Has PeripheralsTask
-frontSens: UltrasonicProbe
1 -backSens: UlirasonicProbe
-leftSens: UltrasonicProbe
Bluetooth -rightSens: UltrasonicProbe
“btSerial: BlustoothSerial “haliSensor. DigtalinputDerice
~deviceName: String -rightWheel: DCMotor
-leftWheel DCMotor
+Bluetooth(} -mu: Imu
—~Bluetooth() -ads’ ADS1115
. P -peripheralsMQueue: Queue
receive()
" -controlMQueue Queue
send()
-mainMQueue: Queue
+PeripheralsTask()}
+~PeripheralsTask{)
+routine()
T 1]t ‘1
Has Has
Has Has
Object Classes Has Has
1
1
. 1 UltrasonicProbe
1 Servo :
Imu -enPin: unsigned long
nirar -pin: unsigned char -inputPin: unsigned char
-i2e:12C -port. unsigned char -triggerPin: unsigned char
-pin: unsigned char o = »
_port unsigned char N -dutyCycle: unsigned char distance: double
-isOn: bool meUS()
+readAcceleration() LPF’WMWWIGEEE() +UltrasonicProbe()
+InfraredSensor() +readPitch() “urnRight +~UlirasonicProbe()
+~InfraredSensor() +readYaw +tule$1 0 +getDistance()
+when_line() urnLeft()
1
ADS1115 2 1
-i2c12C Digit tDevice
-gain: float DCMotor . oed ch
_rate: int -pin: unsigned char
_mode: int -stepPers: float -port: unsigned char
+DCMotor
+mugy hDCMm% +DigitalinputDevice()
+imuQ) +readEncoder() -+~DigitalinpulDevice()
+readValue() +is_active()
~+readVoltage() —

Figure 13: Embedded software class diagram. Source: Authors (2024)

As seen in Figure 13, the embedded software was divided into three sets:
the main loop, the core tasks, and the auxiliary object classes. These will be
described in the following sections.

Main loop:

It is the module where all message queues for task communication are in-
stantiated and where the Bluetooth task and task scheduler are declared. It
checks if a start command or a schedule command was received and awakens
the task scheduler if it is. It also signalizes the Bluetooth task to send update

Technical Report: Ash - The table tennis ball fetcher 17

messages to the app whenever it receives a message from the Control task.

Auxiliary object classes:

These object classes describe each peripheral instantiated in the peripherals
task. Every Object has distinct properties that must be correctly configured to
work as described in section 3.2.5.

Some classes could be used directly from the [10]GpioZero library, while oth-
ers had to be implemented using general-purpose 1/0 classes, such as the hall
effect sensor and the vacuum motor ones.

Core tasks:

The core tasks regulate the functioning of the robot. Their communication
and synchronized behavior keep the algorithm stable, allowing the main task of
caching balls to run in parallel to multiple other tasks.

The Bluetooth task initializes the Bluetooth module in the Raspberry and
listens for connections. Whenever a connection is created, all received mes-
sages, which arrive in a serialized json format, are then parsed and analyzed. If
a start or schedule command is received, it sets flags to let the scheduler know
when to start the Control task. If other robot commands are received, messages
are sent to the control task via its message queue.

The task Scheduler is responsible for creating, scheduling, and/or awak-
ening the control task. Whenever a start or schedule command is received,
the main loop calls the task scheduler, which uses the standard Python library
schedule to schedule the call of a function on the time given by the user.

The Peripherals task is responsible for keeping all the peripherals informa-
tion updated for the control task to use. It declares all the used peripherals via
the [10]GpioZero peripherals library and the [11]Adafruit ADC and IMU com-
munication libraries. The infrared sensors are configured to generate interrup-
tions for the ball collection counter. All other sensors are read via polling.

Finally, the Control task is what can be considered as the cognitive part of
the robot. All its movement logic, data retrieving, image processing, and state
management are done inside this class. The main algorithm for fetching balls is
a state machine that takes all the peripheral data to assert a current state and a
future state for the robot. The diagram in figure 14 represents all of the states the
robot can be in and all the conditions for transitions to happen.

Technical Report: Ash - The table tennis ball fetcher 18

RobotSMDiagram

entry / configureMain

T

Charging

SearchingBaseFollowingWall \ (ConnectedToBase] (WaitingForCharger]

T9
Unloading

do / unload for 15 seconds.
exit / reset counter

[WaitingForStartCommandOrSchedule

entry / disablePeripherals
I wait
exit / configurePeripherals

do / searchForinfraRedLed

T T5—»| entry / disablePeripherals
T19————>{ entry / findWall do / calibrateSensors J—l do / wait do / wait
do / moveParallelToWall exit / cableRemoved

do / sendMessageToApp

SearchingBaseUsingCamera
T8

entry / getEuclideanDistanceAndAngle
do/ searchForinfraRedLed

'RobotStuck
(al . -
entry / pauseRobot T2 Ti2-
do / sendWarningToApp

' AvoidingStaticObject

entry/
do / moveAroundObject
exit / increaseSpeed

RobotPaused

T22
entry/
entry / shutVacuumPowerOft
WallForUser do / wait
T
T
do / waitForUser
‘CatchingBall
EUSST
entry / reduceSpeed
entry / p: entry / increaseVacuumPower
entry/ off do / aproachTheBall
do / sendWarningToApp exit / increaseSpeed
—_——————— exit / reduceVacuumPower
Transitions

T1 -> Is Not Connected to base
T2 -> Charge complete

T3 -> Operation stopped

T4 -> Close from the base

T5 -> Charger connected

T6 -> Battery low

7 -> In Operation

T8 -> Start command received or start schedule

T9 -> Has balls collected

T10 -> Ball found

T11 -> Static object detected

T12-> Close to a wall

T13 -> Recelve stop command o low battery or load s full or schedule end
Ti4 -> Ball caught

T15 -> Static object avoided

T16 -> Is parallel with the wall

T17 -> Base found using camera

T18 -> Base not found

T19 -> Message sent

T20 -> Is Connected to base

T21 - Front infrared sensor fired 3 seconds ago and the back sensor did not
T22 -> Front sensor fired again (ball exited)

T23 -> No infrared sensor was fired in 3 seconds

T4 -> Robot status is not static and accelerometer has no response for 3 seconds
25 -> Still no response after 3 more seconds

T26 -> User sends resume command

T27 -> User sends pause command

Figure 14: Ash state transitions for the controller task state machine.

To achieve such features, sub-tasks had to be created to decouple core func-
tionalities so that they wouldn’t run into any conflicts. The sub-tasks created
were:

* Bluetooth Handler: A thread responsible for checking the message queue
for command messages arriving from the Bluetooth task and setting the
corresponding variables. It also sends periodic messages to the main loop
to update the mobile application UI with the information read by the sen-
SOrs;

Technical Report: Ash - The table tennis ball fetcher 19

* Odometry: A constantly updating odometry measurement that does its
calculus based on the encoder readings from the wheel’s motor encoders.
Used to estimate the rotation and distance of the robot from the return
base;

* Ball detection: A thread that uses the camera inputs and [12]OpenCV li-
brary to detect the table tennis balls, make distance measurements based
on them and go after them to fetch the balls as desired;

* Static object detection: A thread that also uses the camera inputs to detect
static objects and avoid them or use them to complement the algorithm
further.

The Odometry is based on a constant reading of the wheel encoders that,
for each iteration, takes the difference in pulses of each wheel compared to the
last iteration and transforms it into traveled distance, allowing the calculation of
angle and position relative to the base.

The ball detection feature took several steps to be accomplished. After in-
stalling the [12]OpenCv library, the first step was to create a curve of distance
(cm) X ball radius (pixels) so that the ball distance estimation could work. To
do that, pictures were taken with a table tennis ball fixed in known distances, as
seen in Figure 15.

Figure 15: Ball in fixed positions to create the distance curve.

With the distance outputs obtained from the process above, the final dis-
tance fit curve used in the algorithm was achieved, as shown in Figure 16.

Technical Report: Ash - The table tennis ball fetcher 20

® 2495x-1,05
50

40

30 L]

20 L

60 80 100 120
Figure 16: Final distance (cm) X ball radius (pixels) fit curve.

After calculating the distance curve, the next step was to calculate the angle
of the ball relative to the center of the robot. This determines the angle the robot
must turn to fetch a ball. The distance between the ball’s center and the image’s
center must be calculated to do that.

To do so, the distance d,;; from the camera center to the ball is calculated
using the fit curve from image 16. After that, considering that the ball has a
radius of 2 cm, which translates to a certain amount of pixels, it is possible to
obtain the estimated horizontal distance to the image center (dj) by comparing
the pixel count. With all this information and the distance of a camera from the
center of the robot, the estimation of the ©, f angle between the ball and the
center of the robot can be done, as shown in Figure 17 and equation 1.

o]

Center of
the camera

Center of
the robot

« deg- estimated distance camera center -> ball
o dgg; o - estimated distance robot center -> ball
« dp - estimated horizontal distance camera center -> ball I:]
o dp, - estimated horizontal distance robot center > ball

* Bcc - angle between the ball and the camera center
» Bcr - angle between the ball and the robot center

Figure 17: Ball angle relative to the robot center.

2

h= -
plxelsballRadius

' pixelsballCenter

dp—2

Ofc = sen”I(

Technical Report: Ash - The table tennis ball fetcher 21

Finally, by being able to detect balls and knowing their distance and angle
relative to the robot, the only remaining part is rotating the robot and moving it
forward to pull the balls with the vacuum, following a predefined algorithm.

3.3.2 Mobile Application

The ASH mobile application connects with the ASH - the table tennis ball fetcher
robot. This app enables users to control and monitor the robot’s actions. The
following details describe the class diagram, the data exchanged between the
mobile application and the robot via Bluetooth, the functions of each screen,
and their related activities.

BatterylconUpdater

© UpdateBatterylcon()

~©

© comectonactiiy
& bluetoothManager
Communicator
Scheduleact . o isBluetoothConnected
© ity [© Ermoractivity | © romepagenctivy - oWebSenverconnected
o startrimepicker o handler o bluetoothManager | o enableBluetoothiauncher |
e ler o redirectAunnable o batteryicon o onCreate()
C Eomenon < onCreatel) a robotstatusHandler © connectBluetooth()
5 robotStatusHandler o attemptReconnect() o onCreate() P ermiesion=y)
< onCreatel) o redirectToConnectionActivity() © handleBluetoothConnection() R
© checkWebServerConnection()
© proceedBasedonConnection()
© showToast()
© onRequestPermissionsResult()
(© MyBluetoothManager
o instance
‘@ CatchingMainProcessActivty| ‘@ CatchingLiveProcessActivity! s
oisPaused oisPaused o outputStream
o commandscheduler o commandscheduler o Inputstre (©) Livenctivity
o ashBlueAppicon o ultrasonicSensorHandler o
o ESP32_MAC_ADDRESS o playerview
o et e ©oconmunict
o balculectedview S batteryicon e e O DR sandler o client
o ballsCollectedFrame o balisCollectedview oi + sendviessagel)
o robotStatusHandler o ballsCollectedFrame o getinstance() o onCreate() Lo sendMessagel) |
o ulrasonicSensorHandler o robotstatusHandler o isBluetoothsupported() o setupPlayer()
+ onCreatel) + onCreatel) ¢ lsBuctoothEnzbiecd o onDestroy()
osf b . nackbar() e
o updateRobotstatus() © updateRobotStatus() o connectTobenicel)
o startListening()
o isConnected()
o disconnect()
(©) UttrasonicsensorHandler
o sensorSignalLeft
o sensorsignalFront
o sensorsignalRight
2 sensorsignalback © commandscheder (© Robotstatuskandier
o sensorDataLeft o biuetoothManager
o sensorDataFront o context o activity @responseranas]
5 R e | o esponseHandler,
o sensorDataRlght L5 e senastartCommandn) context [Responserond®
o sendReturnToBaseCommand() handleStatusUpdate()
O e o sendPauseCommand() © handleRobotError() Lo handleResponse() |
D e eRiont o sendResumeCommand() o fadeinview()
S o e o scheduleCommand() o blinkTextview()
o handler © sendCommand()
o updateSensorData()
o fadelnView()
o fadeOutview()
(©) robotstatus
istteft
ront
(©Rrobotcommand ight
s roborcommand | ack
arobotCommand Cbaentens
o ballsCollected
o tojson() o ballsCoordinates

o robotstatus
o robotError

o fromjson()

Figure 18: App Class Diagram

Technical Report: Ash - The table tennis ball fetcher 22

Bluetooth Data Exchange The ASH mobile application communicates with
the robot via Bluetooth, sending commands and receiving status updates. Below
are the details of the data exchanged:

¢ Data Sent to the Robot:

- Commands: The application sends various commands to the robot,
such as:
* start: Initiates the ball fetching process.
* return_to_base: The robot returns to its base.
+ pause: Pauses the current operation.
* resume: Resumes a paused operation.

* schedule: Sends a schedule for the fetching process with spec-
ified start and end times.

¢ Data Received from the Robot:

— Status Updates: The application receives JSON formatted status up-
dates from the robot, which include:

» sens_dist_left: Distance measurement from the left sensor.

*+ sens_dist_front: Distance measurement from the front sen-
SOr.

+ sens_dist_right: Distance measurement from the right sen-
SOor.

* sens_dist_back: Distance measurement from the back sensor.

+ battery_level: Current battery level of the robot.

* balls_collected: Number of balls collected.

* balls_coordinates: List of coordinates of the balls detected
by the robot.

* robot_status: Current status of the robot (e.g., collecting balls,
returning to base).

+ robot_error: Error message if the robot encounters an issue.

The ‘RobotStatusHandler‘ class manages status updates and adjusts the user
interface accordingly. The ‘CommandScheduler class transmutes commands to
the robot, ensuring seamless communication between the mobile application
and the robot. The ‘MyBluetoothManager* class oversees the Bluetooth connec-
tion and facilitates data exchange.

Connection Activity The connection screen is displayed when the application
is launched. It features the ASH robot logo and a Bluetooth icon indicating the
connection status.(See Figure 19a)

Technical Report: Ash - The table tennis ball fetcher 23

Home Page The home page provides options for the user to start or schedule
the ball fetching process. Displays the ASH robot logo, battery icon, and two
buttons: "Catch!" to start fetching balls and "Schedule" to schedule the fetching
process. (See Figure 19b)

Schedule Activity The schedule activity allows users to set a start and end time
for the ball fetching process. Provides time pickers for selecting start and end
times and buttons to send the schedule to the robot. (See Figure 19c)

Catching Process Screen This screen is displayed when the ball fetching pro-
cess is active. It shows the robot’s status and sensor data. Displays sensor data
from all four directions (left, front, back, right), the current status of the robot,
and buttons to pause, resume, or return the robot to the base. It also has a but-
ton to view the Field of View (FOV). (See Figure 20a)

Field of View (FOV) Screen The FOV screen visually represents the robot’s sur-
roundings and the positions of detected balls. Displays a map showing the po-
sitions of balls detected by the robot’s sensors. (See Figure 20c)

Error Screen When the robot encounters an issue, an error screen is displayed,
showing different messages based on the specific error, such as ’base not found,’
'robot stuck,” or 'ball stuck in the tube.” The screen also includes a reconnect
button, providing a comeback solution if the problem is resolved. (See Figure
21)

Technical Report: Ash - The table tennis ball fetcher

24

%4 £9 An
2 : 30 PH
=

wudTen

=1

(a) Connection Activity (b) Home Screen Activity (c) Schedule Activity

Figure 19: Activities

EEIE R -] 1 le v B - 3 1836 % T @
flcer<ninor Nalf{+)

FRONT
260 a6

(- @@y)

@ . a

(a) Catching Main Activity (b) Catching Live Activity (c) FOV Activity

Figure 20: User main Activities

Technical Report: Ash - The table tennis ball fetcher 25

16:30 % T @

Robot is A ball is

stuck. i
Please check sr‘l.':uhl:uk_r lpuhme

the robot.

(a) Error screen when the (b) Error screen when the (c) Error screen when the
robot got stuck ball got stuck base couldn’t be found

Figure 21: Error Activities

4 Results

4.1 Budget

The project’s original budget was R$1200. Additional expenses were incurred
to manage risks stemming from the project’s complexity. Despite efforts to op-
timize resources and control costs, the need for spare parts and other foreseen
adjustments increased the total expenses. As a result, the final budget amounted
to R$1394.49.

Item Project Relation Cost (R$)
Raspberry Pi 5 Original Estimation 311.00
Structure Original Estimation 200.00
Keyed source Original Estimation 39.00
Batteries Original Estimation 58.00
Spare Battery Risk Mitigation 29.00
Voltage and current regulator Original Estimation 15.99
Motors Original Estimation 150.00
Servo Mg995 Original Estimation 23.10

Technical Report: Ash - The table tennis ball fetcher

26

IMU Original Estimation 90.00
Infrared sensors Original Estimation 10.00
Ultrasonic Sensors Original Estimation 34.00
IMX219-83 Stereo Camera Original Estimation 90.00
Electronic Components Original Estimation 36.00
Spare Electronic Components Risk Mitigation 36.00
Vacuum Cleaner Original Estimation 96.00
Spare Vacuum Cleaner Risk Mitigation 110.00
Swivel Wheel Original Estimation 7.50
Wheel Original Estimation 12.10
Infrared Led 3W Original Estimation 3.00
Spare Infrared Led 3W Risk Mitigation 13.00
Analog-digital conversion module | Original Estimation 9.00
Total \ 1394.49

4.2 Schedule

Table 2: Budget

Each deliverable was assigned specific hours based on the complexity and re-
quirements of the tasks involved. The Mechanical section (row 1) includes the
design and assembly of the robot’s structure. The Hardware section (row 2) cov-
ers the design and implementation of the electronic components. The Software
section (row 3) encompasses both the embedded firmware and the mobile ap-
plication development. Integration involves the assembly and testing of all com-
ponents to ensure seamless operation. Presentation preview accounts for coor-
dinating and recording project progress and outcomes. Defense counts on the
last efforts for the defense of the project.

The following data represent the hours allocated and spent on each part of

the project.
Name Estimated Hours | Worked Hours
Mechanical Section 92 72
Hardware Section 102 87
Software Section 98 80
Integration 1 107 85
Integration 2 92 81
Final Integration 233 263
Presentation Preview 105 144
Defense 80 78
Total 909 890

Technical Report: Ash - The table tennis ball fetcher 27

Table 3: Schedule

Figure 22 shows the bar graph representing the estimated and worked hours
for each deliverable.

Hours

280 Estimated
Il worked 263
|
Delay
240 - [|
23 il
[|
200 |
[|
[|
160 [
[|
— 144
120 107 | 105
102 08 | —
03 . . 2 [| [|
80 . - 80 — — || || 80 4
— [| | [| | [| [| -
[| [| [| [| [| [| | [|
40 [| [| [| . || M « [| ||
|| [| [| H_ Wl [| B | [|
. o, | HE "H_ "N Y. . [|
o -_ -- -— -- -- -- -— - Deliverables
D1 D2 D3 D4 D5 D6 P1 R1

Figure 22: Delivered Hours Bar grap. Source: Authors (2024)

Figure 23 illustrates the functional requirements achieved, categorized into
completed non-optional, uncompleted non-optional, completed optional, and
uncompleted optional requirements. The uncompleted optional requirements
include ASH being capable of unloading the balls on the base autonomously
and transmitting the video from the camera through Wi-Fi for the mobile appli-
cation. The completed optional requirement is that ASH should be able to dock
in the base autonomously.

Technical Report: Ash - The table tennis ball fetcher 28

6.9%

4.2%
1%

Completed Functional Requirements
Uncompleted Functional Requirements

Uncompleted Optional

87.9%

Figure 23: Functional Requirements Achieved. Source: Authors (2024)

5 Conclusions

This work proposed to develop ASH, an autonomous table tennis ball fetcher
system to assist in training sessions. In order to attain the requirements pre-
sented in section 2, the project development, detailed in section 3, was a long
and complex process, approaching it in four different pillars: a) Mechanical,
creating a lightweight and durable structure to house the robot’s components;
b) Electronic, with the development of a power supply system, motor drivers
and other pieces of hardware required for the robot operation; c) Firmware, in-
tegrating all of the robot’s resources into a properly functional system, and; d)
Mobile application, giving ASH a simple and complete control center for user
operation.

The project schedule analysis shows 909 estimated hours versus 890 worked
hours, indicating an underestimation in planning. Despite this, significant mile-
stones were achieved. The bar graph shows the distribution of estimated and
worked hours across deliverables. From all the functional requirements chart
shows that 98.6% of obligatory requirements were completed, with 1.4% remain-
ing uncompleted. For optional requirements, 35% were completed and 65%
were not. This analysis highlights efficient resource management and effective
task execution, resulting in a functional table tennis ball fetching robot. The
completion rate of critical objectives confirms the project’s success in meeting
its primary goals and ensuring overall functionality.

Even with the positive outlook of the project, there are still some points that

Technical Report: Ash - The table tennis ball fetcher 29

could see some improvements. Since some optional features were not imple-
mented, they are very likely to be the first step towards an even more complete
and robust solution. The uncompleted optional requirements include ASH be-
ing capable of unloading the balls on the base autonomously and transmitting
the video from the camera through Wi-Fi for the mobile application. Addition-
ally, some areas could receive further investments in order to increase ASH’s
overall construction quality and maintainability, for example, with better cable
routing (hardware).

References

[1] The international table tennis federation statutes. https:
//documents.ittf.sport/sites/default/files/public/2024-
02/2024_ITTF_Statutes_clean_version.pdf, 2024. effective 1st
January 2024.

[2] H1BI1T. How to use the 1298n motor driver module. https://www.hibit.
dev/posts/89/how-to-use-the-1298n-motor-driver-module. Ac-
cess in: 05/06/2024.

[3] RobotBanao. 5v dual-channel relay module shield with arduino.
https://www.robotbanao.com/products/5v-10a-2-channel-2-
ch-relay-module-shield-for-arduino. Access in: 05/06/2024.

[4] Single-channel relay module shield for arduino image. https://www-
konga-com-res.cloudinary.com/w_400,f_auto,fl_lossy,dpr_3.0,
g_auto/media/catalog/product/I/F/58064_1671628931. jpg. Access
in: 05/06/2024.

[5] JGP. Bateria li-ion 18650 12v 2200mah placa bms + carregador.
https://wuw.jgpassistencia.com.br/MLB-1781820987-bateria-
li-ion-18650-12v-2200mah-placa-bms-carregador-_JM. Access in:
05/06/2024.

[6] Blog da Robética. Como utilizar o sensor de obstdculo reflexivo in-
fravermelho ir com arduino. https://www.blogdarobotica.com/
2023/04/18/como-utilizar-o-sensor-de-obstaculo-reflexivo-
infravermelho-ir-com-arduino/. Access in: 05/06/2024.

[7] Usinalnfo. Sensor ultrassénico de distancia hc-sr04. https://www.
usinainfo.com.br/sensor-ultrassonico/sensor-ultrassonico-
de-distancia-hc-sr04-2295.html. Access in: 05/06/2024.

[8] Control Automético Educacién. Motor dc con encoder - velocidad — posi-
cibn. https://controlautomaticoeducacion.com/arduino/motor-
dc-encoder/. Access in: 05/06/2024.

https://documents.ittf.sport/sites/default/files/public/2024-02/2024_ITTF_Statutes_clean_version.pdf
https://documents.ittf.sport/sites/default/files/public/2024-02/2024_ITTF_Statutes_clean_version.pdf
https://documents.ittf.sport/sites/default/files/public/2024-02/2024_ITTF_Statutes_clean_version.pdf
https://www.hibit.dev/posts/89/how-to-use-the-l298n-motor-driver-module
https://www.hibit.dev/posts/89/how-to-use-the-l298n-motor-driver-module
https://www.robotbanao.com/products/5v-10a-2-channel-2-ch-relay-module-shield-for-arduino
https://www.robotbanao.com/products/5v-10a-2-channel-2-ch-relay-module-shield-for-arduino
https://www-konga-com-res.cloudinary.com/w_400,f_auto,fl_lossy,dpr_3.0,q_auto/media/catalog/product/I/F/58064_1671628931.jpg
https://www-konga-com-res.cloudinary.com/w_400,f_auto,fl_lossy,dpr_3.0,q_auto/media/catalog/product/I/F/58064_1671628931.jpg
https://www-konga-com-res.cloudinary.com/w_400,f_auto,fl_lossy,dpr_3.0,q_auto/media/catalog/product/I/F/58064_1671628931.jpg
https://www.jgpassistencia.com.br/MLB-1781820987-bateria-li-ion-18650-12v-2200mah-placa-bms-carregador-_JM
https://www.jgpassistencia.com.br/MLB-1781820987-bateria-li-ion-18650-12v-2200mah-placa-bms-carregador-_JM
https://www.blogdarobotica.com/2023/04/18/como-utilizar-o-sensor-de-obstaculo-reflexivo-infravermelho-ir-com-arduino/
https://www.blogdarobotica.com/2023/04/18/como-utilizar-o-sensor-de-obstaculo-reflexivo-infravermelho-ir-com-arduino/
https://www.blogdarobotica.com/2023/04/18/como-utilizar-o-sensor-de-obstaculo-reflexivo-infravermelho-ir-com-arduino/
https://www.usinainfo.com.br/sensor-ultrassonico/sensor-ultrassonico-de-distancia-hc-sr04-2295.html
https://www.usinainfo.com.br/sensor-ultrassonico/sensor-ultrassonico-de-distancia-hc-sr04-2295.html
https://www.usinainfo.com.br/sensor-ultrassonico/sensor-ultrassonico-de-distancia-hc-sr04-2295.html
https://controlautomaticoeducacion.com/arduino/motor-dc-encoder/
https://controlautomaticoeducacion.com/arduino/motor-dc-encoder/

Technical Report: Ash - The table tennis ball fetcher 30

[9] Waveshare. Binocular camera module, dual imx219, 8 megapixels, ap-
plicable for jetson nano and raspberry pi, stereo vision, depth vision.
https://www.waveshare.com/imx219-83-Stereo-camera.htm. Access
in: 05/06/2024.

[10] Gpiozero. https://gpiozero.readthedocs.io/en/latest/. Raspberry
pi GPIO library.

[11] Adafruit. https://learn.adafruit.com/raspberry-pi-analog-to-
digital-converters/ads1015-slash-ads1115. Adafruit ADC and IMU
libraries.

[12] Opencv. https://opencv.org/. Image processing python library.

https://www.waveshare.com/imx219-83-Stereo-camera.htm
https://gpiozero.readthedocs.io/en/latest/
https://learn.adafruit.com/raspberry-pi-analog-to-digital-converters/ads1015-slash-ads1115
https://learn.adafruit.com/raspberry-pi-analog-to-digital-converters/ads1015-slash-ads1115
https://opencv.org/

	Introduction
	Proposed solution overview

	Project Specification
	Development
	Mechanical Structure
	Hardware
	Docking base
	RaspberryPi Connector Shield
	Motor drivers module
	Power Supply
	Peripherals and utilities

	Software
	Firmware/Embedded Software
	Mobile Application

	Results
	Budget
	Schedule

	Conclusions

