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. Images mining is included inside a broader
concept known as “Multimidia Mining", which

includes, besides images, also video and audio

o Definition: it is the process of searching and discovering high-level
patterns or implicit knowledge (not explicitly visible) in images

o Meaning a large amount of images

o Image mining is an area of high evidence due to the huge amount
of stored images available in the internet



le

e |mage Processing:
o The objective is to treat images by means of mathematical/computational

methods aiming at obtaining an improved image (related to the original one) or
extracting specific patterns
e Image Mining:
o lItisinderdisciplinar, since it uses concepts from: Databases, Statistics, Machine
Learning, Pattern Recognition, and Computational Intelligence
o It also can use the traditional Image Processing methods for pre-processing

the images
o Image mining follows the same data mining procedures, as usual, except by the

fact that images are transformed into a set of numerical atributes (features)



IMPORTANT

Pre-processing: to eliminate all types of noise and format
transformation

Feature extraction: to apply mathematical methods to transform
an image into a low-dimensional numeric vector (features)
Feature selection: to reduce the dimensionality of the data
Analysis: using the reduced vector, to apply the traditional
classification/clustering methods

Special procedures: Reversal Search, Multimodal Image Retrieval



1- Pre-processing: image f|lters

e Aims to highlight or
accentuate some important
characteristic of the image.
Some examples:

o Edge Filter (Canny)
o Color Filter

o Direction Filter (Sobel)




¢- Feature extraction from images

e Itisthe simple transformation of an image into numerical vector
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¢- Feature extraction from images

e Color Descriptors: they are invariant related to scales, translation/rotation

of the image. Examples:
o RGB Histogram: it is a combination of the R, G, and B color historgrams
o Other: Color Moments, Color Coherent Vector, Color SIFT descriptors, etc.




¢- Feature extraction from images

e Texture Descriptors: they measure smoothness and regularity of the
image
o GLCM (Gray-Level Co-occurrence Matrix): extracts statistical measures from the image:
Second Angular Momentum, Correlation, Inverse Differential Moment and Entropy
o LBP (Local Binary Patterns): it is very popular since it is computationally efficient, and it is
robust to illumination changes. Good for face and object recognition
o There are many variants of LBP: https://github.com/carolinepacheco/lbp-library

Binary
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https://github.com/carolinepacheco/lbp-library

¢- Feature extraction from images

e Frequency domain features: have low computational cost and they are

based on the detection of interest points in the image
o  SIFT (Scale Invariant Feature Transform) has robustness to illumination changes and small
positional variations
o SURF (Speed-Up Robust Features) is a detector for interest points in an image and it is
invariant to rotation or scaling
ORB (Oriented FAST and Rotated BRIEF): improved version of SURF
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¢- Feature extraction from images

e Histogram of Oriented Gradients (HOG)
o lItisinspired on SIFT and it is based on the distribution of gradient directions (derivative
of x and y axes of the image)
o Very useful for pedestrian, vehicles and animals detection in images

100 x 200




Some Python libraries for feature extraction in images

e Color histogram: https://pyimagesearch.com/2021/04/28/opencv-image-
histograms-cv2-calchist/ https://medium.com/@rndayala/image-
histograms-in-opencv-40ee5969a3b7

e Local Binary Patterns: https://www.geeksforgeeks.org/create-local-
binary-pattern-of-an-image-using-opencv-python/
https://pyimagesearch.com/2015/12/07/local-binary-patterns-with-
python-opencv/

e Gray-Level Co-occurrence Matrix: https://github.com/alfianhid/Feature-
Extraction-Gray-Level-Co-occurrence-Matrix-GLCM-with-Python



https://pyimagesearch.com/2021/04/28/opencv-image-histograms-cv2-calchist/
https://pyimagesearch.com/2021/04/28/opencv-image-histograms-cv2-calchist/
https://medium.com/@rndayala/image-histograms-in-opencv-40ee5969a3b7
https://medium.com/@rndayala/image-histograms-in-opencv-40ee5969a3b7
https://www.geeksforgeeks.org/create-local-binary-pattern-of-an-image-using-opencv-python/
https://www.geeksforgeeks.org/create-local-binary-pattern-of-an-image-using-opencv-python/
https://pyimagesearch.com/2015/12/07/local-binary-patterns-with-python-opencv/
https://pyimagesearch.com/2015/12/07/local-binary-patterns-with-python-opencv/
https://github.com/alfianhid/Feature-Extraction-Gray-Level-Co-occurrence-Matrix-GLCM-with-Python
https://github.com/alfianhid/Feature-Extraction-Gray-Level-Co-occurrence-Matrix-GLCM-with-Python

Some Python libraries for feature extraction in images

@)

SIFT: https://docs.opencv.org/4.x/da/df5/tutorial_py_sift_intro.html

https: //glthub com/rmlslam/PythonSIFT

SURF: https://mahotas.readthedocs.io/en/latest/surf.html

Blob detection: https://learnopencv.com/blob-detection-using-opencv-python-c/
HOG: https://www.thepythoncode.com/article/hog-feature-extraction-in-python
http://scikit-image.org/docs/dev/auto_examples/features_detection/plot_hog.html

https://www.analyticsvidhya.com/blog/2019/09/feature-engineering-images-

introduction-hog-feature-descriptor/

@)

Sobel and Laplacian:
https://www.bogotobogo.com/python/OpenCV_Python/python_opencv3_Image_Gr

adient_Sobel_Laplacian_Derivatives_Edge_Detection.php

Canny edge detector: https://docs.opencv.org/3.4/da/d22/tutorial_py_canny.html
ORB: https://docs.opencv.org/3.4/d1/d89/tutorial_py_orb.html



https://docs.opencv.org/4.x/da/df5/tutorial_py_sift_intro.html
https://github.com/rmislam/PythonSIFT
https://mahotas.readthedocs.io/en/latest/surf.html
https://learnopencv.com/blob-detection-using-opencv-python-c/
https://www.thepythoncode.com/article/hog-feature-extraction-in-python
http://scikit-image.org/docs/dev/auto_examples/features_detection/plot_hog.html
https://www.analyticsvidhya.com/blog/2019/09/feature-engineering-images-introduction-hog-feature-descriptor/
https://www.analyticsvidhya.com/blog/2019/09/feature-engineering-images-introduction-hog-feature-descriptor/
https://www.bogotobogo.com/python/OpenCV_Python/python_opencv3_Image_Gradient_Sobel_Laplacian_Derivatives_Edge_Detection.php
https://www.bogotobogo.com/python/OpenCV_Python/python_opencv3_Image_Gradient_Sobel_Laplacian_Derivatives_Edge_Detection.php
https://docs.opencv.org/3.4/da/d22/tutorial_py_canny.html
https://docs.opencv.org/3.4/d1/d89/tutorial_py_orb.html

3- Image classification and clustering [T

e The same concepts of Descritive/Predictive Modelling are valid for
images
e Asimple method based on image descriptors can be useful when:
o The features that differentiate the images are very specific (e.g. color, shape, etc)

o A modelis desired to understand (describe) the relevant features of the images
o Alow computational cost is required

e A complex method (convolutional/transfer-learning) for feature

extraction can be useful when;

o The task has high semantic complexity _
o High accuracy is the priority, at the expense of high computational cost



3- Image classification and clustering

e |mage classification use the same computational methods used for

regular data

o Classification (supervised learning): OneR, Decision Trees, SVM, Neural Networks...
o Clustering (nonsupervised learning): K-means, Hierarchical learning...

| f1 12 13 14 f5 ... fn classe
0,123 0,946 0,856 0,168 0,02 .. 0,431 F
f1 12 13 14 S5 .. fn classe
q

0,002 0,701 0,287 0,949 0,923 .. 0,581 M




It is a CBIR (Contents-Based Image Retrieval) where a given
image is the query and the system searches an image
database for similar/related images

Reverse Image Search can be use for:
o Locate the origen or author of the image
o Find other versions of the image (better resolution, faked images...)
o Find internet sites where the image appears.
Many methods can be used:
o SIFT, BoVW (Bag of Visual Words), etc

Several internet sites use reverse image Search
o Google image Search, Bing images, Picsearch, Pxsy, Pinterest, etc



3- Multimodal Image Retrieval

e |Itis arelatively new research area
e |Itisaimed to find, in a multimidia database, resources of a given modality
(e.g. image) using a query of another modality (e.g. text, sketch, audio...)

Image



3- Multimodal Image Retrieval

e Several features are extracted
from each input, according to its
modality

e All feature vectors are
transformed into a common
representation space before T T T
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Image feature extraction using Weka

T[ﬂﬁlﬁltl&la
e OWeka (v.3.8) has an image filters library for

extracting features from images, for instance:

e The features extracted by Weka can be later used in
other systems Python or Orange

AutoColorCorrelogram
BinaryPatternsPyramid
ColourLayout
EdgeHistogam

FCTH
FuzzyOpponentHistogram
Gabor

JpegCoefficient

PHOG
SimpleColorHistogram

| | AlIFilter
|| MultiFilter
» [ supenised
¥ (& unsupenised
> [§§ attribute
¥ (& instance
"] Datafly
"I Flash
¥ (g5 imagefilter
_ AutoColorCormrelogramFilter
| | BinaryPatternsPyramidFilter
| " ColorLayoutFilter
| | EdgeHistogramFilter
| "] FCTHFilter
| | FuzzyOpponentHistogramFilter
|| GabaorFilter
| *| JpegCoefficientFilter
| "] PHOGFilter

. [*| simpleColorHistooramFilter _



Image feature extraction using Orange

e Orange does not have specific feature extractors for images

e |tis possible to use a Python code to compute image features (e.g. LBP, HOG,
RGB histogram, etc) and use them inside Orange
Orange uses a pretrained convolutional neural network (CNN) for extracting

image features. The following are available:
o Squeeze-net (1000 features)

Inception-v3 (4096 features)

VGG-16, VGG-19 (4096 features)

Painters (2048 features)

Deeploc (512 features)

o Openface (128 features)

e All processing is done in the cloud, except for Squeeze-net which is locally
processed

@)
@)
@)
@)
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(ase study #1: Butterfly x Owl
2 S %

o Objective: classify images  Twcm mosoms  owoosipg  noomipg omoosiseg
of monarch butterflies and g
snowy owls

e Objects from other classes
are inserted as “noise” to
check the performance of
the classifier

mno035.jpg mno036.)pg

mno041.jpa

owl002,jpg

A

?m

e Squeeze-netis usedto owO03ipg  ow004ipg w1059
extract a 1000- o
dimensional feature vector &

owl011,jpg owl012jpg owl017.jpag owl018.jpg

owl021,jpg owl022,jpg owl023jpa owl024 jpg owl025,jpa owl026.jpg




Case study #1: Butterfly x Owl

e C(Clustering analysis with T-SNE shows a good separability between the two
main classes




(ase study #1: Butterfly x Owl
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(ase study #1: Butterfly x Owl

e All features

e R ]

Neural Network

Tree (1)
Neural Network

e Top-100 features

Predicted
butterfly owl other )]
butterfly 45 1 4 50
T owl 0 46 4 50
> i
< other 4 7 1 12
¥ 49 54 9 112
1neeg - .
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butterfly owl other )3
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T owl 0 50 0 50
> 2
other 2 0 10 12
3 52 50 10 112

Tree (1)

Neural Network

Predicted
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>
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(ase study #1: Butterfly x Owl

e A Decision-Tree classifier is quite simple and achieves 100% correct

classification
n146 ¢

o
< 5.69409 f T > 5.69409

o_ O
< 12.5239 - >12.52399.01052 T >9.01052

other (]T.) n51 C’
100%, 3/3 ®
e > 5.29646

other
100%, 9/9

< 5.29646




(ase study #1: Butterfly x Owl

e “Open-world” test: training with the two known classes (owl and butterfly)
and testing with unknown data

image name Tree (2) Neural Metwork
_arara01 owl 4 butterfly 2
_donkey(1 owl ':) owl ‘:7
g _otherbutterfly01 butterfly butterfly
1P3 JP3 _otherbutterfly02 butterfly butterfly
_otherbutterfly02 owl 8 owl Q
_otherbutterfly04 owl butterfly
_otherbutterfly0O5> butterfly owl S
_ntherl;:;terﬂym _ntherl;ji:tgerﬂym _utherl;ljj:;terﬂ}-ﬂﬁ _otherowl01 owl butterfly
- _otherowl02 owl owl
_otherowl03 owl owl
_otherowl04 owl owl

_otherowl02jpg  _otherowl03.jpg  _otherowl0djpg  _otherowl05.jpg _otherowl05 owl owl



(ase study #¢: Faces clustering/classification

e Dataset: 350 images from 23 different persons, WITH and WITHOUT class

e Task 1: Comparison of two CNN models as feature extractors (FaceNet X
SqueezeNet) for a clustering task (NO class information)

e Task 2: Comparison of two sets of features for a classification task, with

and without feature selection




(ase study #¢: Faces clustering/classification

e Task 1: a preliminar study using T-SNE shows that the general-purpose
CNN (SqueezeNet) cannot create clear clusters, while the specialized CNN
(FaceNet) creates a concise clusters of the face images.
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(ase study #¢: Faces clustering/classification

e Task 1: T-SNE shows better clustering capability by using features extracted
from the specialized CNN, compared with the general-purpose CNN
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Case study #¢: Faces clustering/classification

e Task#1: The silhouette coefficient indicated 2 major groups in both cases.
o However, for the general-purpose CNN there is no clear difference between groups.

o For the specialized CNN groups are clearly separated by apparent gender

o Hierarchical clustering corroborated with the above findings
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Case study #¢: Faces clustering/classification

e Task 2: Classification task
o The specialized CNN has only 128 features, but achieved better results

Model AUC CA F1 Prec Recall MCC
%Neural Nehn.rorké 0.996 0937 0935 0936 0.937 0933
SVM (1) 2992 0539 0933 0529 0939 0936

o The general-purpose CNN has 1000 features, but achieved results much lower than the
previous case
Model AUC  CA F1 Prec Recall MCC

éNeuraI Neh-'l.r{!rké 0.943 0.609 0598 0610 0609 0.588

SVM (2) 0942 0586 0.550 0.548 0.586 0.564
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