

Data Mining & Knowledge Discovery

Class 8 – Time-series & Signals Mining 2025

Prof. Heitor Silvério Lopes Prof. Thiago H. Silva

Tasks in time-series & signals mining

- Classification
 - To classify distinct time-series into pre-defined classes according to their temporal behavior
- Clustering / comparison
 - Estimate the similarity of time-series and group them according such similarity
- It is **outside** the scope of this course: time-series prediction
 - Based on the past behavior of a time-series, estimate its future behavior

Main components of time-series

• Trend:

- Long-term increment or decrement
- Sazonality:
 - Short-term periodic effects
- Cycles:
 - Long oscillations of unknown duration (cyclycal ups and downs), usually caused by external factors
- Residuals:
 - The remainder of the signal after the other three componentes have been eliminated
 - They are not always clearly detectable

Steps for processing time-series

- **Pre-processing**: to eliminate spurious noise (seasonality). It can be done by sampling signal averages (low-pass filter)
- Normalization: to adjust time-series to the same amplitude scale
- **Windowing and segmentation**: to divide the time-series into fixed-size (or overlapping) segments to be further processed
- Feature extraction: to apply mathematical methods to transform a timeseries into a low-dimensional numeric vector, in which each element of the vector ha a specific meaning
- Feature selection: to reduce the dimensionality of the data
- **Analysis**: using the reduced vector, to apply the traditional classification/clustering methods

Feature extraction from time-series

- Classes of features:
 - Statistics domain: mean, variance, skewness, kurtosis, standard deviation, etc
 - Time domain: autocorrelation, periodicity, trend
 - Frequency domain: Fourier transform coefficients, spectral entropy, spectral power, dominant Frequency
 - Wavelet domain: wavelet coefficients, energy in specific frequency bands, wavelet entropy
- Other approaches:
 - Neural networks: regular or convolutional NNs
 - Autoencoders

Important python libraries for time-series processing

- TSFEL
- Librosa
- pyAudio Analysis
- Tsfresh
- Pyts

TSFEL

What is the problem ?

- How to choose the best atributes of a given dataset for constructing a predictive or descriptive model ?
- If the number of attributes is small:
 - If the user has previous knowledge about the data domain, just select the more representative atributes
 - If the computational power is large, perform a factorial experimente, that is, test all possible combinations of attributes and compare results.
- If the number of attributes is (very) large:
 - It is imperative to use a computationally efficient method to select the most adequate attributes and discard the remaining

• Extracts 65 features from a time-series, grouped as:

- Time domain
- Statistics domain
- Spectral domain
- Fractal domain
- TSFEL requires very low programming effort
- Documents : <u>https://tsfel.readthedocs.io/en/latest/</u>
- GITHUB: <u>https://github.com/fraunhoferportugal/tsfel</u>
- Original paper:
 - Barandas, Marília and Folgado, Duarte, et al., <u>TSFEL: Time Series</u>
 <u>Feature Extraction Library</u>. *SoftwareX* 11 (2020).

SPECTRAL

TSFEL

TSFEL library

TSFEL

Fractal domain

Features	Computational Cost
Detrended fluctuation analysis (DFA)	3
Higuchi fractal dimension	3
Hurst exponent	3
Maximum fractal length	3
Multiscale entropy (MSE)	1
Petrosian fractal dimension	1

Temporal domain

Features	Computational Cost
Absolute energy	1
Area under the curve	1
Autocorrelation	1
Centroid	1
Entropy	1
Mean absolute diff	1
Mean diff	1
Median absolute diff	1
Median diff	1
Negative turning points	1
Peak to peak distance	1
Positive turning points	1
Signal distance	1
Slope	1
Sum absolute diff	1
Total energy	1
Zero crossing rate	1
Neighbourhood peaks	1

Spectral domain Computational Cost Features FFT mean coefficient 1 Fundamental frequency 1 Human range energy 2 LPCC 1 MFCC 1 Max power spectrum 1 Maximum frequency 1 Median frequency 1 Power bandwidth 1 Spectral centroid 2 Spectral decrease 1 Spectral distance 1 Spectral entropy 1 Spectral kurtosis 2 Spectral positive turning points 1 Spectral roll-off 1 Spectral roll-on 1 Spectral skewness 2 Spectral slope 1 Spectral spread 2 Spectral variation 1 Wavelet absolute mean 2 Wavelet energy 2 Wavelet standard deviation 2 Wavelet entropy 2 Wavelet variance 2

Statistical domain

Features	Computational Cost
ECDF	1
ECDF Percentile	1
ECDF Percentile Count	1
Histogram	1
Interquartile range	1
Kurtosis	1
Max	1
Mean	1
Mean absolute deviation	1
Median	1
Median absolute deviation	1
Min	1
Root mean square	1
Skewness	1
Standard deviation	1
Variance	1

Librosa library

- Specially created for **music** and **audio** analysis
- Documents: <u>https://librosa.org/doc/latest/index.html</u>
- GITHUB: <u>https://github.com/librosa/librosa</u>
- Reference:
 - McFee, B., Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric Battenberg, and Oriol Nieto. "librosa: Audio and music signal analysis in python." In Proceedings of the 14th Python in Science Conference, pp. 18-25. 2015

Spectral features

Compute a chromagram from a waveform or power spectrogram.

Constant-Q chromagram

Computes the chroma variant "Chroma Energy Normalized" (CENS)

Variable-Q chromagram

Compute a mel-scaled spectrogram.

Mel-frequency cepstral coefficients (MFCCs)

Compute root-mean-square (RMS) value for each frame, either from the audio samples y or from a spectrogram s.

Compute the spectral centroid.

Compute p'th-order spectral bandwidth.

Compute spectral contrast

Compute spectral flatness

Compute roll-off frequency.

Get coefficients of fitting an nth-order polynomial to the columns of a spectrogram.

Computes the tonal centroid features (tonnetz)

Compute the zero-crossing rate of an audio time series.

Rhythm features

Estimate the tempo (beats per minute)

Compute the tempogram: local autocorrelation of the onset strength envelope.

Compute the Fourier tempogram: the short-time Fourier transform of the onset strength e

Tempogram ratio features, also known as spectral rhythm patterns.

Feature manipulation

Compute delta features: local estimate of the derivative of the input data along the selected as

Short-term history embedding: vertically concatenate a data vector or matrix with delayed cop

Feature inversion

Approximate STFT magnitude from a Mel power spectrogram.

Invert a mel power spectrogram to audio using Griffin-Lim.

Invert Mel-frequency cepstral coefficients to approximate a Mel power spectrogram.

Convert Mel-frequency cepstral coefficients to a time-domain audio signal

pyAudioAnalysis library

- Download: https://pypi.org/project/pyAudioAnalysis/
 - Extracts MFCCs, spectrogram, chromagram, etc
 - Classify unknown sounds
 - Train and evaluate classifiers for audio segments
 - Train regression models to classification
 - Performs dimensionality reduction
- GITHUB: <u>https://github.com/tyiannak/pyAudioAnalysis/wiki</u>
- Reference:
 - <u>https://hackernoon.com/audio-handling-basics-how-to-process-audio-files-using-python-cli-jo283u3y</u>

Feature ID	Feature Name	Description
1	Zero Crossing Rate	The rate of sign-changes of the signal during the duration of a particular frame.
2	Energy	The sum of squares of the signal values, normalized by the respective frame length.
3	Entropy of Energy	The entropy of sub-frames' normalized energies. It can be interpreted as a measure of abrupt changes.
4	Spectral Centroid	The center of gravity of the spectrum.
5	Spectral Spread	The second central moment of the spectrum.
6	Spectral Entropy	Entropy of the normalized spectral energies for a set of sub-frames.
7	Spectral Flux	The squared difference between the normalized magnitudes of the spectra of the two successive frames.
8	Spectral Rolloff	The frequency below which 90% of the magnitude distribution of the spectrum is concentrated.
9-21	MFCCs	Mel Frequency Cepstral Coefficients form a cepstral representation where the frequency bands are not linear but distributed according to the mel-scale.
22-33	Chroma Vector	A 12-element representation of the spectral energy where the bins represent the 12 equal-tempered pitch classes of western-type music (semitone spacing).
34	Chroma Deviation	The standard deviation of the 12 chroma coefficients.

Case study #1: Human Activity Recognition (HAR)

- It is a multivariate time-series that aims at identifying human actions:
 - Walking, climbing stairs, descending stairs, sitting, standing, lying down
- Sensors used are 3D- accelerometers and gyroscopes (cell phone)
- Data:

https://archive.ics.uci.edu/ml/datasets/human+activity+recog nition+using+smartphones

 Google Colab notebook: <u>https://github.com/fraunhoferportugal/tsfel/blob/master/not</u> <u>ebooks/TSFEL_HAR_Example.ipynb</u>

Case study #1: Human Activity Recognition (HAR)

• TSFEL extracts 561 features:

```
import tsfel 1.0250
import pandas as pd
# load dataset
df = pd.read_csv('Dataset.txt')
# Retrieves a pre-defined feature configuration file to extrac
cfg = tsfel.get_features_by_domain()
```

```
# Extract features
X = tsfel.time_series_features_extractor(cfg, df)
```


Case study #1: Human Activity Recognition (HAR)

• Classification results using Random Forest

	precision	recall	f1-score	support	WALKING	494	2	0	0	0	0
WALKING	0.77	1.00	0.87	496	WALKING_UPSTAIRS	99	363	9	0	0	0
WALKING_UPSTAIRS	0.87	0.77	0.82	471	WALKING DOWNSTAIRS	47	49	324	0	0	0
WALKING_DOWNSTAIRS	0.97	0.77	0.86	420	ak					-	-
SITTING	0.69	0.49	0.57	491	SITTING	0	1	0	240	250	0
STANDING	0.63	0.79	0.70	532	STANDING	1	0	0	110	424	0
LAYING	1.00	1.00	1.00	537	STANDING	1	0	0	110	421	0
					LAYING	0	0	0	0	0	537
accuracy			0.81	2947		.0		9	S .G	0,	<u>с</u> ,
macro avg	0.82	0.80	0.80	2947		WALKING	IPSTAIL	MET	ARCHTINC	TANDING	ATTHE
weighted avg	0.82	0.81	0.80	2947		4	ALKING P. MAL	AING DOWN		S.	
Accuracy: 80 726162			24.	Predict	ed labe	•					

Case study #2: Comparison of Stocks in B3

- 18 stocks negotiated at B3 (Brazil) and 6 from NYSE (USA) were selected
- Closing prices between 2023/dec/4th and 2024/dec/3rd
- Stocks were divided into the following subclasses:
 - Bank sector: BBAS3, BBDC3, ITUB4, SANB11, ABCB4, BEES3
 - Electrical sector: CMIG4, CPLE6, EGIE3, AURE3, EQTL3, ISAE4
 - Industrial sector: SHL4, WEGE3, INEP4, AERI3, KEPL3, ROMI3
 - Technology sector (USA): INTC, MSFT, AAPL, NVDA, TSLA, AMZN
- TSFEL was used for extracting features
- A deep analysis of the features was done, including the effect of feature selection

Case study #2: Comparison of Stocks in B3

Actual

- Based on the paper:
 - Jorge, O.C., Lopes, H.S., <u>Métodos de Aprendizado de Máquina</u> <u>Aplicados ao Reconhecimento Autoral e Temporal de Bandas de</u> <u>Rock and Roll</u>. In: Proc. of XIV Brazilian Conference on Computational Intelligence, 2019.
- Objectives:
 - **Authorial** Classification: Check whether the musical Productions of the same band have their ow "signature" (style coherence)
 - **Temporal** Classification: Check how the musical productions of diferente bans change style over time

- 4 Rock'n roll bands: AC/DC, Iron Maiden, Metallica, Pink Floyd
- Production range: 1967..2014

Led Zeppeli Metallica Pink Flovd

	Banda		Período de Produção		Nur	n. álbu	ns N	Num. músicas			
A	AC/DC		1976-2000				13		130		
Iron Maiden		1980-2015			16			158			
Led Zeppelin		1969-1982			9		81				
Metallica		1983-2008			9		95				
Pink Floyd		19	67-201	4		15		174	ł		
Ano	65-69	70-74	75-79	80-84	85-89	90-94	95-99	00-04	05-09	10-14	
AC/DC			- 0000	00-0-	\sim	0	\sim	•			
Iron Maiden				00000			$ \rightarrow \rightarrow $			\sim	_

- Preprocessing:
 - Input: áudio files in the WAV format
 - Conversion to monoaural and resampling at 16kHz
- Feature extraction:
 - pyAudioAnalysis extracted features regarding:
 - Spectral analysis
 - Chromatic vector
 - Chromatic variation
 - Spectral energy
 - Spectral entropy
 - etc

• Methods:

- Descriptive analysis: classification using C4.5, Ridor, Ripper
- Predictive analysis: classification using Neural Network (MLP)
- Visual analysis: T-SNE, silhouette coefficient

• Applicability

- Authorial classification
- Temporal classification (5- and 10-years time range)

• Results regarding style coherence by band using T-SNEE

• Results for the authorial classification using Neural Networks

• Temporal classification using Neural Networks for variable periods:

Período	Verdadeiro Positivo	Falso Positivo	Período	Verdadeiro Positivo	Falso Positivo
Pré - 1970	0,400	0,069	Pré - 1974	0.630	0.133
1970 - 1974	0,306	0,061	1975 - 1980	0.581	0.122
1975 - 1978	0,522	0,045	1981 - 1987	0.674	0.055
1979 - 1980	0,548	0,058	1988 - 1996	0.732	0.056
1981 - 1983	0,625	0,055	Pós - 1997	0.795	0.031
1984 - 1987	0,731	0,033	Média	0.682	0.040
1988 - 1991	0,92	0,033	Media	0,002	0,040
1992 - 1996	0,597	0,031			
1997 - 2004	0,846	0,014			
Pós - 2004	0,629	0,035			
Média	0,611	0,043			

- Temporal classification using Neural Networks for short and long periods.
- Before 1980 musical productions are almost exclusive of PF and LZ

• T-SNE: qualitative evaluation of style coherence

