

Data Mining & Knowledge Discovery

Class 2b – Data Classification (Rules) 2025

Prof. Heitor Silvério Lopes Prof. Thiago H. Silva

Tasks x Methods in Data Mining

Tasks	Methods
Classification	Decision trees (C4.5), Classification rules, k-nearest-neighboors, Random forest, Support vector machine, Bayesian classifier, Neural network, Adaboost
Association Rules	Apriori, FP-growth, Eclat, Zigzag
Regression	Linear Regression, Polynomial regression, Logistic regression
Feature Selection & Dimensionality Reduction	Principal component analysis (PCA), Chi-square, Entropy, Information gain
Clustering	K-means, Kohonen's self-organized map, Density-based scan, Hierarchical grouping, t-SNE
Data visualization *	Silhouette plot, scatter plot, heatmap, box plot, clusters, t-SNE

Advantages and drawback sof decision trees

• Advantages:

- Visual representation
- Compact representation of a rule set
- Fast classification of new instances
- It can deal with continuous of discrete atributes

• Drawbacks:

- Irrelevant atributes can negativelly affect the construction of the tree and its understanding
- Small variations in the data can result in significantly different trees
- A subtree can be replicated several times
- Decision trees are not adequate when having many classes

Rule-based classifiers

- Classify instances of a dataset using a set of *n* rules (*n*≥ 1) such as:
 IF antecedent THEN consequent
- A set of "*R*" rules is a disjunction* of 1..*n* rules
- The **antecedent** is a conjunction* of *1..k* triplets of the type: {Attribute, Operator, Value}: {*Aj,Oj, Vj*}, *j*=1..*k*
 - The **Operator** depends on the type of atribute, it can be: $\{=, \neq, >, <, \leq, \geq, \text{ etc}\}$
 - Each **Value** is defined within the limits {*max,min*} of each attribute
- The **consequent** represents the Class to which the instance belongs
- * conjunction="AND" (^), disjunction="OR" (v)

Advantages of a rule-based classifier

- They are as comprehensive as Decision Trees
- They are intuitively easy to interpret
- They are easy to generate from a dataset
- They can classify new instances quickly
- Their classification performance is comparable to Decision Trees

Decision Trees X Decision Rules

- Decision trees are criated top-down ("divide-and-conquer"), while Decision Rules are created botton-up (by "coverage")
- A decision tree has a set of equivalent decision rules and viceversa
- BUT:
 - The set of rules generated by traversing a tree can be very large !!!
 - Small sets of rules with many attributes can generate very complex trees

Important properties for a rule induction algorithm

- Quality:
 - The set of induced rules should have a good accuracy (or other quality metric), even in the presence of noise in the data
- Simplicity:
 - In order to be humanly compreensible, the set of induced rules must be as simple as possible
- Escalability:
 - In real-world applications, datasets may be large and high-dimensional.
 - The rule induction algorithm **must be** computational efficient

Coverage X Accuracy

• The **Coverage** of a rule is the fraction of instances that satisfy the antecedent of the rule:

Coverage(R) = |A| / |T|

- Where: |A| is the number of instances that satisfy rule R, and |T| is the total number of instances
- The **Accuracy** of a rule is the fraction of instances that satisfy both, the antecedent and the consequent of the rule:

 $Precision(R) = |A \cap c| / |T|,$

• Where $|A \cap c|$ is the number of instances that satisfy the rule

• Rule **R1** covers 1/16 of instances and hits 1/1

	Nome	Temperatura corporal	Cobertura de pele	Dá cria	Ser Aquático	Ser Aéreo	Possui Pernas	Hiberna	Rótulo da Classe
1	Humano	Sangue quente	Cabelo	Sim	Não	Não	Sim	Não	Mamifero
ו ר	Piton	Sangue frio	Escamas	Não	Não	Não	Não	Sim	Réptil
2 2	Salmão	Sangue frio	Escamas	Não	Sim	Não	Não	Não	Peixe
S ∕I	Baleia	Sangue quente	Cabelo	Sim	Sim	Não	Não	Não	Mamifero
4 5	Sapo	Sangue frio	Nenhuma	Não	Sim	Não	Sim	Sim	Anfibio
6	Dragão de Komodo	Sangue frio	Escamas	Não	Não	Não	Sim	Não	Réptil
7	Morcego	Sangue quente	Cabelo	Sim	Não	Sim	Sim	Sim	Mamifero
, 8	Pomba	Sangue quente	Penas	Não	Não	Sim	Sim	Não	Ave
9	Gato	Sangue quente	Pêlo	Sim	Não	Não	Sim	Não	Mamifero
10	Leopardo	Sangue frio	Pélo	Sim	Sim	Não	Sim	Não	Mamifero
11	Tubarão	Sangue frio	Escamas	Não	Sim	Não	Não	Não	Peixe
12	Tartaruga	Sangue frio	Escamas	Não	Semi	Não	Sim	Não	Réptil
13	Pingüim	Sangue quente	Penas	Não	Semi	Não	Sim	Não	Ave
14	Porco-espinho	Sangue quente	Espinhos	Sim	Não	Não	Sim	Sim	Mamifero
15	Enguia	Sangue frio	Escamas	Não	Sim	Não	Não	Não	Peixe
16	Salamandra	Sangue frio	Nenhuma	Não	Semi	Não	Sim	Sim	Anfibio

R1: (Dá cria= não) AND (Ser aéreo = sim) → Ave
R2: (Dá cria= não) AND (Ser aquático= sim) → Peixe
R3: (Dá cria = sim) AND (Temp.corporal = quente) → Mamífero
R4: (Dá cria = não) AND (Ser aéreo = não) → Réptil
R5: (Ser aquático = semi) → Anfíbio

• Rule **R2** covers 4/16 of instances and hits 3/4

	Nome	Temperatura corporal	Cobertura de pele	Dá cria	Ser Aquático	Ser Aéreo	Possui Pernas	Hiberna	Rótulo da Classe
1	Humano	Sangue quente	Cabelo	Sim	Não	Não	Sim	Não	Mamifero
ו ר	Piton	Sangue frio	Escamas	Não	Não	Não	Não	Sim	Réptil
2 2	Salmão	Sangue frio	Escamas	Não	Sim	Não	Não	Não	Peixe
S ∕	Baleia	Sangue quente	Cabelo	Sim	Sim	Não	Não	Não	Mamifero
ч 5	Sapo	Sangue frio	Nenhuma	Não	Sim	Não	Sim	Sim	Anfibio
6	Dragão de Komodo	Sangue frio	Escamas	Não	Não	Não	Sim	Não	Réptil
7	Morcego	Sangue quente	Cabelo	Sim	Não	Sim	Sim	Sim	Mamifero
, 8	Pomba	Sangue quente	Penas	Não	Não	Sim	Sim	Não	Ave
9	Gato	Sangue quente	Pêlo	Sim	Não	Não	Sim	Não	Mamifero
10	Leopardo	Sangue frio	Pélo	Sim	Sim	Não	Sim	Não	Mamifero
11	Tubarão	Sangue frio	Escamas	Não	Sim	Não	Não	Não	Peixe
12	Tartaruga	Sangue frio	Escamas	Não	Semi	Não	Sim	Não	Réptil
13	Pingüim	Sangue quente	Penas	Não	Semi	Não	Sim	Não	Ave
14	Porco-espinho	Sangue quente	Espinhos	Sim	Não	Não	Sim	Sim	Mamifero
15	Enguia	Sangue frio	Escamas	Não	Sim	Não	Não	Não	Peixe
16	Salamandra	Sangue frio	Nenhuma	Não	Semi	Não	Sim	Sim	Anfibio

R1: (Dá cria= não) AND (Ser aéreo = sim) → Ave
R2: (Dá cria= não) AND (Ser aquático= sim) → Peixe
R3: (Dá cria = sim) AND (Temp.corporal = quente) → Mamífero
R4: (Dá cria = não) AND (Ser aéreo = não) → Réptil
R5: (Ser aquático = semi) → Anfíbio

- Rule **R3** covers 6/16 of instances and hits 5/6
- Rule **R4** covers 9/16 of instances and hits 3/9
- Rule **R5** covers 3/16 of instances and hits 1/3

R1: (Dá cria= não) AND (Ser aéreo = sim) → Ave
R2: (Dá cria= não) AND (Ser aquático= sim) → Peixe
R3: (Dá cria = sim) AND (Temp.corporal = quente) → Mamífero
R4: (Dá cria = não) AND (Ser aéreo = não) → Réptil
R5: (Ser aquático = semi) → Anfíbio

• Analysing the whole dataset with all 5 rules:

Rule	Coverage	Accuracy
R1	1/16 = 6,25%	1/1 = 100,0%
R2	4/16 = 25,00%	3/4 = 75,0%
R3	5/16 = 31,25%	5/5 = 100,0%
R4	9/16 = 56,25%	2/9 = 22,2%
R5	3/16 = 18,75%	1/3 = 33,3%

- Which is the **best** rule (R1..R5) ??
- The best means the rule that has, at the **same time**, the maximal coverage and maximal accuracy:

Regra	Cobertura	Acurácia
R1	1/16 = 6,25%	1/1 = 100,0%
R2	4/16 = 25,00%	3/4 = 75,0%
R3	5/16 = 31,25%	5/5 = 100,0%
R4	9/16 = 56,25%	2/9 = 22,2%
R5	3/16 = 18,75%	1/3 = 33,3%

Problems with rule-based classifiers

- Although classification rules are interesting for Descriptive Analysis, it does not always work correctly:
- Consider the following set of rules and the **new** instances to be classified:

R1: (Dá cria= não) AND (Ser aéreo = sim) → Ave R2: (Dá cria= não) AND (Ser aquático= sim) → Peixe R3: (Dá cria = sim) AND (Temp.corporal = quente) → Mamífero R4: (Dá cria = não) AND (Ser aéreo = não) → Réptil R5: (Ser aquático = semi) → Anfíbio									
Animal	Тетр.	Cobertura	Dá cria	Aquático	Aéreo	Pernas	Hiberna		
lêmure	quente	pêlos	sim	não	não	sim	não		
tartaruga	frio	escamas	não	semi	não	sim	não		
tubarão frio escamas sim sim não não não									

- The "lêmure" instance triggers rule R3 (→ "mamífero"): **OK !**
- The "tartaruga" instance triggers rule R4 (→"réptil") and R5 (→"anfíbio"): CONFLICT !
- The "tubarão" instance do not trigger any rule, so there is an **INDETERMINATION !**

Rule ordering

- If a set of rules is NOT mutually exclusive, then an instance could be covered by multiple rules
- There are two approaches for solving a possible rule conflict problem:
 - Ordered Rules: rules are ordered in descending order of priorit (based on a quality metric such as accuracy or coverage)
 - Unordered Rules: an instance can trigger multiple rules and each consequent has a vote. The highest number of votes for the class labels determines the instance's class

Rule ordering

- Individual rules are ranked according to their quality, considering a specific metric, but this may be difficult to interpret in the real-world
- Example: consider the original rules ordered by Coverage or Accuracy

R7: (Dá cria=sim) ^ (Temp.corporal=quente) \rightarrow Mamífero R11: (Cobertura=escamas) ^ (Aquático=sim) \rightarrow Peixe R8: (Dá cria=não) ^ (Temp.corporal=quente) \rightarrow Ave R12: (Cobertura=nenhuma) \rightarrow Anfíbio R10: (Cobertura=escamas) ^ (Aquático=não) \rightarrow Réptil R6: (Cobertura=penas) ^ (Ser aéreo=sim) \rightarrow Ave R9: (Ser aquático=semi) \rightarrow Anfíbio
Accuracy

Regra	C	А	ordem C	ordem A
R7	31,25%	100%	1	1
R11	18,75%	100%	3	2
R8	12,50%	100%	5	3
R12	12,50%	100%	6	4
R10	25%	50%	2	5
R6	12,50%	50%	7	6
R9	18,75%	33,30%	4	7

Different ordering !!!

Rule ordering

- In general, ordering by classes is the most usual method for classification rules
- Rules that belong to the same class are grouped together
- Relative ordering **inside the same class** is not importante, as long as one of the rules is triggered
- Sorting from the original rules:

```
R6: (Cobertura=penas) ^ (Ser aéreo=sim) \rightarrow Ave

R8: (Dá cria=não) ^ (Temp.corporal=quente) \rightarrow Ave

R7: (Dá cria=sim) ^ (Temp.corporal=quente) \rightarrow Mamífero

R12: (Cobertura=nenhuma) \rightarrow Anfíbio

R9: (Ser aquático=semi) \rightarrow Anfíbio

R10: (Cobertura=escamas) ^ (Aquático=não) \rightarrow Réptil

R11: (Cobertura=escamas) ^ (Aquático=sim) \rightarrow Peixe
```

Rule extraction from decision trees

- Each rule is obtained b starting from the root node and ending with a leaf node in the tree. This procedure is repeated for all leaf nodes
- Using first-order logic it is possible to simplify the set of rules

R1: $(P=N\tilde{a}o) \wedge (Q=N\tilde{a}o) \rightarrow classe =$ R2: $(P=N\tilde{a}o) \wedge (Q=Sim) \rightarrow classe +$ R3: $(P=Sim) \wedge (R=N\tilde{a}o) \rightarrow classe +$ R4: $(P=Sim) \wedge (R=Sim) \wedge (Q=N\tilde{a}o) \rightarrow classe =$ R5: $(P=Sim) \wedge (R=Sim) \wedge (Q=Sim) \rightarrow classe +$

Baseline Algorithms

- Objective: to provide a benchmark against which to compare other classification algorithms
 - **ZeroRule** algorithm (or "no rule")
 - This algorith Simply predicts the class of the majority of instances
 - If the number of instances per class is balanced, any class can be used
 - **OneRule** algorithm (or "single rule")
 - Applies the classifier using only the atribute of greatest importance (which minimizes the entropy or othe measure)

Case study #3: Iris dataset with baselines

- ZeroRule algorithm ("no rule")
 - Since classes are balanced, it is enough to choose any class
 - Accuracy= 50/150 = 30%
- OneRule algorithm ("single rule")
 - Use Only the most importante atribute
 - The one at the top of the decision-tree

Case study #4: Titanic dataset with baselines

- ZeroRule: *survived=no* 809/1309=**61,8**%
- OneRule: If sex=female then survived=yes
 1021/1309=78%
- Decision-tree

Model 🔻	AUC	CA	F1	Precision	Recall
Tree	0.930	0.868	0.865	0.869	0.868
CN2 rule inducer	0.883	0.845	0.841	0.847	0.845

Case study #4: Titanic dataset with baselines

		Model	-	AUC	CA	F1	Precision	Recall	
	• CN2 algorithm	Tree		0.930	0.868	0.865	0.869	0.868	
		CN2 rule indu	lcer	0.883	0.845	0.841	0.847	0.845	
	IF conditions				THEN class	 Distribution 	ition Probabilities	[%] Quality	Length
6	sex=female AN	ID Port-embarked=C A	AND age≥52	2.0 →	survived=1.0	[0, 12	21 7:93	-0.00) 3
8	sex=f	emale AND pclass=1 A	- AND age≥14	4.0 →	survived=1.0	[4, 11	91 4:96	-0.207	۲ <u>3</u>
11	sex≠f	emale AND pclass=2 A	- AND age≤14	4.0 →	survived=1.0	[1, 1]	11 14:86	-0.414	4 3
17	pclass=2 A	ND parents-or-childrer	n-aboard≥2	2.0 →	survived=1.0	[0, 1]	71 5:95	-0.00) 2
18	pclass=2 AND parents-or-	children-aboard≥1.0 A	AND age≥31	1.0 →	survived=1.0	[0, 7	11:89	-0.00) 3
24	pclass=2 A	ND parents-or-childrer	n-aboard≥1	1.0 →	survived=1.0	[2, 10	01 21:79	-0.650) 2
26	pcl	ass=2 AND age≤57.0 A	AND age≤22	2.0 →	survived=1.0	[1, 10	01 15:85	-0.439) 3
27	pclass=2 AN	ID Port-embarked≠C A	AND age≤57	7.0 →	survived=1.0	[8, 34	41 20:80	-0.702	. 3
28	pclass	s≠3 AND age≤17.0 ANI	D sex≠fema	ale →	survived=1.0	[1.6	1 22:78	-0.592	. 3
31	age≤17.0 A	ND Port-embarked=C	AND age≤6	6.0 →	survived=1.0	[1.6	1 22:78	-0.592	3
32	sex≠	female AND pclass=3	AND age≥3	3.0 →	survived=1.0	IO. 8	10:90	-0.00) 3
35	Port-embarked=Q AND age≤31.	0 AND siblings-spouse	s-aboard≥1	1.0 →	survived=1.0	[1, 6	22:78	-0.592	. 3
39		Port-embarked≠S A	AND age≤17	7.0 →	survived=1.0	[4, 9	33 : 67	-0.890) 2
40	Port-embarked=C AND age≤29.89770554493308 A	ND parents-or-childrer	n-aboard≥1	1.0 →	survived=1.0	[2, 6	30 : 70	-0.811	3
42			pclass	=1 →	survived=1.0	[1.4	29:71	-0.722	! 1
43		age≥33.0 AND Port-	-embarked	=S →	survived=1.0	[1, 5	25:75	-0.650) 2
46		Port-	embarked=	=C →	survived=1.0	[1, 5	25:75	-0.650) 1
47		age≥22.0 A	AND age≤23	3.0 →	survived=1.0	[5, 1]	11 33 : 67	-0.896	i 2
48	age≥29.8977	70554493308 AND Port-	-embarked;	≠S →	survived=1.0	[9, 19	91 33:67	-0.906	; 2
51	parents-or-children-aboard≥1.0 AND sex=female A	ND parents-or-childrer	n-aboard≥2	2.0 →	survived=1.0	[2, 4	38:62	-0.918	3
52	parents-or-	children-aboard≥1.0 Al	ND sex≠ma	ale →	survived=1.0	4.7	38:62	-0.946	j 2
54		Port-	-embarked	=S →	survived=1.0	[8, 12	21 41:59	-0.971	1
0	siblings-spouses-	-aboard≥4.0 AND Port-	-embarked	≠S →	survived=0.0	[5.0	86:14	-0.00) 2
1	sex≠femal	e AND siblings-spouse	s-aboard≥	5.0 →	survived=0.0	[9.0	91:9	-0.00) 2
5	siblings-spouses-aboard≥3.	0 AND siblings-spouse	s-aboard≥	5.0 →	survived=0.0	[6.0	88:12	-0.00) 2
7	sev ≠female AN	ID Port-embarked=0 /	AND nelace	-2	cup/ived=0.0	15.0	96,14	-0.00) 2

Rule ordering: ordered Covering algorithm: exclusive Gamma: 0.7 Evaluation measure: entropy Beam width: 5 Minimum rule coverage: 5 Maximum rule length: 3

Case study #2: Titanic dataset

• Case distribution by port of embarkation and by survival

