

Data Mining & Knowledge Discovery

Class 1a – Introduction & Overview 2025

Prof. Heitor Silvério Lopes Prof. Thiago H. Silva

Data mining \rightarrow Knowledge discovery

The purpose of D.M. is to find new, useful, and relevant knowledge hidden in large amounts of data

The Multidisciplinarity of Data Mining

- Data mining uses concepts and methods from many areas:
 - Machine Learning
 - Databases
 - Computational Intelligence (EC, NN, FS)
 - Mathematics / Statistics
 - Programming languages

Data x Information X Knowledge

- Data:
 - Instances (objects, people, timestamps, etc)
 - Describe individual, not collective, properties, and they are:
 - Easy to collect
 - Available in large amounts and forms
 - Few useful for predictions or decision-making
- Information:
 - Classes (groups) of instances
 - Describe generic patterns, structures, principles, etc
 - Hard to obtain
 - Few abundant
 - Allow generalizations and predictions
- Knowledge
 - Regards the comprehension of something (including facts, habilities and informations)
 - Obtained by means of human perceptions or learning

We are drowning in <u>information</u>, but starving for <u>knowledge</u>. John Naisbitt (**1982**)

Some important definitions of Data Mining

- Automatic/semi-automatic discovery of structural patterns in data (Witten et al., 2000)
- Extraction of structured knowledge which is useful, previously unknown, nontrivial, humanly comprehensible, from large amounts of data (Fayyad et al., 1996)
- Desirable features of discovered knowledge:
 - Correctness
 - Generality
 - Utility
 - Comprehensibility
 - Novelty

Examples of rules discovered using data mining

• Case 1: consider a dataset of patient records from a maternity hospital. A data-mining procedure found this rule:

IF (patient.age >) 15 **AND** (patient.age < 50) **AND** (sector = "surgical clinic") **AND** (surgery.type = "cesarean") **THEN** (patient.sex = "female")

Case 2: consider a dataset of pediatric oncological medical records*.
 A data-mining procedure found this rule:

IF (histology.type = carcinoma) AND (patient.age < 3)
AND (oncological.stage = 1) AND (metastasis="no")
THEN (years.survival > 5)

* Bojarczuk, C.C., Lopes, H.S., Freitas, A.A. A constrained-syntax genetic programming system for discovering classification rules: application to medical data sets. *Artificial Intelligence in Medicine*, v. 30, n. 1, p. 27-48, 2004.

Life-cycle of Data Mining projects Harc work Pre-processing: Collection, formatting, selection, data cleaning, data integration reduction Raw data Data warehouse E F G D н CONTLAST NOT FIRST NOT CREATION DOLLAST UPDAT 2 7/26/2008 7:23 1003 Winn Brian 2 7/26/2008 7:23 2 7/26/2008 7:23 Pattern discovery 1003 Vizquel Oscar 2 7/26/2008 7:23 2 7/26/2008 7:23 Doreen 2 7/26/2008 7:23 2 7/26/2008 7:23 1003 Vizquel Meaghan 2 7/26/2008 7:23 2 7/26/2008 7:23 1003 Sweeney 1003 Sweeney Matthew 2 7/26/2008 7:23 2 7/26/2008 7:23 Data mining methods M 2 7/26/2008 7:23 2 7/26/2008 7:23 Filtered/cleaned data Pattern analysis and interpretation Knowledge !!

Motivations for Data Mining

1) VERY LARGE amount of data freely available in the internet

- o E-mails and social networks
- o Business and bank transactions
- Web page searches (Webscrapping!)
- o Medical and biological data
- Scientific and astronomical data

Motivations for Data Mining

2) Business/commercial interest (\$\$\$)

Leaders

May 6th 2017 edition >

The Economist

Regulating the internet giants

The world's most valuable resource is no longer oil, but data

The data economy demands a new approach to antitrust rules

Critical Dilema in Data Mining

- The amount of data generated, created, stored, etc, grows *exponentially*
- The ability to mine, understand, and effectively use these data grows *linearly* (best case!)

 Data mining may help us to understand large amounts of data by extracting useful knowledge

* https://explodingtopics.com/blog/data-generated-per-day

Tasks x Methods in Data Mining

Tasks	Methods
Classification	Decision trees (C4.5), Cassification rules, k-nearest-neighboors, Random forest, Support vector machine, Bayesian classifier, Neural network, Adaboost
Association Rules	Apriori, FP-growth, Eclat, Zigzag
Regression	Linear Regression, Polynomial regression, Logistic regression
Feature Selection & Dimensionality Reduction	Principal component analysis (PCA), Chi-square, Entropy, Information gain
Clustering	K-means, Kohonen's self-organized map, Density-based scan, Hierarchical grouping, t-SNE
Data visualization *	Silhouette plot, scatter plot, heatmap, box plot, clusters, t-SNE

Tasks x Methods in Data Mining

- Types of data:
 - Numerical
 - Categorical
 - Text
 - Image/video
 - Time-series/signals
- Some data types require diferent tasks, for instance:
 - Image, time-series/signals can be clustered or classified
 - Text can be classified, but may require other specific tasks (e.g. sentiment analysis)

Some open-source softwares for Data Mining

- Orange (Python): developed and maintained by the University of Ljubljana (SL) <u>https://orangedatamining.com/</u>
 - Easy-to-use windows interface (visual programming), add-ons for specific tasks, allows integration with Python code.
- Weka (Java): created and maintained by the Waikato University (NZ) <u>https://www.cs.waikato.ac.nz/ml/weka</u>
 - Very large library of methods, community support
 - Not-so-user-friendly interface, Poor documentation
- Knime (Java): developed and maintained by the Konztanz Universitaet (GE) <u>https://www.knime.com/</u>
- Further information: <u>https://www.datamation.com/big-data/open-source-data-mining-tools/</u>

