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This tutorial is divided in five parts:

1. PART 1: Operational definition of Memetic
Algorithms, overview of a few success /
documented stories. (&~ 25 mins.)

2. PART 2: Abstract Conceptual framework
(Syntactic model 4+ taxonomy) (& 25 mins).
Coffee Break, (= 10 mins.)

3. PART 3: Design issues for a robust engi-
neering of competent MAs. (= 30 mins.)

4. PART 4: Revisiting the “Memetic’ metaphor,
future lines of research and Q&A. (= 30
mins.)

5. PART 5: Open discussion. (= 15 mins.)

TOTAL TIME ~ 135 mins.
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Part 1

e Operational definition for Memetic Algo-
rithms

e Overview of a few success / documented
stories.



Evolutionary algorithms which include a stage
of individual optimization or learning (usually
in the form of local search) as part of their
search strategy are Memetic Algorithms.

Some, but not all, of the earliest references
can be traced back to:

[HN87],[MGSK88],[JSG89],[Mos89].



GA+4LS were named MAs by Moscato in [Mos89]

GA-+LS were present from the very beginnings of
EC

MASs are also called: Hybrid Genetic Algorithms,
Genetic Local Search, Lamarckian Genetic Algo-
rithms, Baldwinian Genetic Algorithms.

MASs are inspired by models of adaptation in natu-
ral systems that combine evolutionary adaptation of
populations of individuals(EA) with individual learn-
ing within a lifetime(LS). Others consider the LS
process as development.

MASs are inspired by Dawkin’s Meme which repre-
sents a unit of cultural evolution that can exhibit
refinement. So far, MAs have not been used in
this sense!



The most basic MA can be seen below:

Memetic_Algorithm():

Begin
t =0;
/* Initialize the evolutionary clock (generations) */
Generate an initial population P(%);

Repeat Until ( Termination Criterion Fulfilled ) DO
Recombine;

Mutate;
Improve_by_local_search ;

Select_for next _generation;

t=t+1;
Od
Return best solution(s);
End.

Some Examples From the Literature:



In [AVO7] a short review on early MAs for the
TSP is presented, where an MA was defined
by the following skeleton code:

Genetic_Local_Search(P € S'):
Begin
/* A pm>1 */
For i := 1 To u Do
Iterative Improvement(s;) ;
Od
stop_criterion := false;
While ( — stop criterion ) DO
Pr = (Z);
For i := 1 To X Do
/* Mate */
M; € P™;
/* Recombine */
si € Hpm(M;);
/* Improve */
Iterative Improvement(s;) ;
Pr:= PruJ {8,‘};
Od
/* Select */
P e (PU PN+,
evaluate stop_criterion;
Od
End.




GLS_Based_Memetic_Algorithm[HM99]:

Begin

Initialize population;

For i := 1 To sizeOf(population) Do
individual = population;;
individual := Local — Search — Engine(individual) ;
Evaluate(individual) ;

Od

Repeat Until ( termination condition ) Do
For j := 1 TO #recombinations DO

selectToMerge a set Sper C population;
of fspring = Recombine(Spar, x);

Evaluate(of fspring);
Add offspring to population;
Od

For j := 1 To #mutations DO
selectToMutate an individual in population;
Mutate(individual) ;

Evaluate(individual) ;
Add individual to population;
Od
population = Select Pop(population);
Od
End.




In [FM96a]:

STSP-GA:
Begin
Initialize population P with Nearest-Neighbor(...
For i := 1 To popsize(P) Do
Lin — Kernighan — Opt(individuali),i € P;
Od
Repeat Until ( converged ) Do
For i := 0 ToO #crossover DO

Select two parents i,4,%, € P randomly;
tc = DPX — STSP(i4,1);
Lin-Kernighan-0pt (i.) ;
With probability m, do Mutation-STSP(i.) ;
Replace an individual of P by i.;
Ood
Ood
End.




In [FF93]:

Genetic_Hybrid_Algorithm(H1, H>):
Begin
P :=0;
For i := 1 To m Do
Generate a random permutation p;
Add Hi(p) to P;
Od
Sort P;
For i := 1 TO number of generations DO
For j := 1 TO number of offsprings DO
select two parents pi,p> from P;
child := crossover(p1,p2);
Add Hy(child) to P ;
Od
Sort P;
Cull(P,number_of of fsprings_per_generation);
Od
Return the best p € P;
End.
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In [DH98]:

/*
/*
/*
/*
/*
/*
/*

GL _for_Coloring:
Begin

f,F*: fitness function and */

best value encountered so far */

s*: best individual encountered so far */
i, MaxIter: current and */

maximum number of iterations */

best(P): returns the best individual */

of the population P */

1=0;

generate () ;

s* 1= best(Py);

fri=f(s);

While ( f* > 0 and ¢ < maxiIter ) DO
P! := crossing(P;, Ty) ;

/* using specialized crossover */

Piy1 := mutation(P}) ;

/* using tabu search */
If (f(best(P+1)) < f*) Then

s* i= best(P;+1);
Fi=1(s")s

Fi
i
Ood
End.

= i+1;

11




In [KSO0O0]:

PF_MA:
Begin
Random initialize population Parents;
Repeat Until ( Finalization criteriamet ) DO

.
b

mating pool := Select mating(Parents);
of fspring := Cross(mating _pool) ;
Mutate(of fspring);

Parents := Select(Parents + of fspring);
Od
End.

12



Similarly, other works with MAs have used local
search before or after mutation, before or after
Crossover.

In many cases the local search was a simple
hill-climber algorithm (by means of a specific
move operator), or more sophisticate methods
like simulated annealing, tabu search, GRASP,
FANS, etc.

On some cases the local search was used only
to bias the selection procedure a la Baldwin
(more on this later). However, the majority of
MASs are Lamarckian MAS.

13



Design Issues for Memetic Algorithms

Engineering

MA specific:

m VWhere/when do we apply local search?

mm VWhich individuals in the population will be improved
by local search?

mm How long/wide should the local search be?

mm VWhat neighborhoods, acceptance criteria, etc the LS
will use?

mm How do we integrate the standard genetic operators
with local search?

mm Shall we use a Baldwinian or Lamarckian model for
optimization?

mm VWhich is the fitness landscape an MA is exploring?
mm How do we engineer an MA that can jump out of
deep local optima or traverse large neutral plateaus?
m What is needed for an MA to be able to cope with
Multi-objective problems?

gm HOow premature convergence can be averted?

gm Help from theory?

EA dgeneral:

Do we use specialized crossover,mutations?

Do we use panmitic EA or geographically distributed
or tree-topology or ..?

Shall we used a problem-specific representation or
would a binary representation be enough?

etc.

14



Part 2

e Syntactic Model for Memetic Algorithms

e MAS taxonomy

15



The purpose of the next slides is to present
an abstract formalism that captures the points
made before.

With this formalism we will classify existing
MAS according to their architecture.

We will also be able to discuss several archi-
tectural issues and venture into new regions of
the design space of Memetic Algorithms.

16



A formalism for an Evolutionary Algorithm

EA = (P%6° X\ ul, F,G,U) where

PO = (a9,.. .,aB) € I* Initial population of solutions

I ={q,...,q:}} n—ary finite discrete problem representation

59 C R Initial operator parameter set

pw € N Population size

e A€ N Number of offspring

e [ N Length of representation

e F: I~ RT Fitness function (objective)
e G :I"w+— I" Generating Function

U : I* x I* — I* Updating function

17



Examples of G as generating functions are mu-
tation and crossover operators:

o R:IPxd—1

o M : I xdé— 1.

If O € I* denotes the set of offspring then an
iteration of the GA is given by:

Of = M(R(P's"),s"
Vie {1,..., )}
pttl = yotuph), (1)

where t is the time step.

18



Overview of a Memetic Algorithm:

o

POPULATIONS ARCHIVE

FIUP2U..]|

@

e e e e e e e e e e —— ==

cS
MemePool
LS1
LS2
LSn
fS
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The local search operators will be members of
a set, LSS, of available local search strategies
to the MA:

LSS — {Ll,...,Lm}
In the majority of MAs in the literature 1 < |LSS| <2

Regardless the number of helpers/memes at
hand we need to coordinate their activities with
the generating functions (i.e., crossover and
mutation).

e T he fine grain scheduler coordinates a helper'’s
activity with crossover and mutation.

e [ he coarse grain scheduler organizes the
application of a helper to the set of par-
ents, offsprings or their union.

20



The fine grain scheduler, which coordinates
the activity of a local search with a generating
function, has the following signature:

fS:(I1xd—T)X LSS x Il x§x (w1

The coarse grain scheduler, that coordinates
the activity of a local search and the update
function, is defined by:

¢S (IHx I TP x LSS X IM X IM x § X ¢ > IH

21



Why do we distinguish between fS() and ¢S()?

e fS() “knows" just one individual at a time
(in the case when it coordinates the appli-
cation of a helper with mutation) or two
individuals (for the case of crossover).

e ¢S() can provide population statistics to
the helper it is coordinating with the up-
date function.

Note also that both schedulers have access to
the set of helpers, not just to a unique and
fixed local searcher.

22



Then, an iteration of the Memetic Algorithm
becomes:

Of = fSy(M,LY, fSp(R, Ly, P58, ¢Y), 6%, ¢h)

Vie{1,...,\}
t Nt
P = s, Lh79 Pt ot 6t ¢t
j7k7h€7{17"'7|LSS|}

(2)

and t as before.

23



A natural generalization on these concepts calls
for a third kind of scheduler: meta-scheduler(msS)

e MAs that employ a mS can apply a helper/meme
to an already selected population using in-
formation from archived populations: evo-

lutionary memory

24



The meta scheduler(mS) has the following sig-
nature:

mS : LSS x Hp x IF x & x ¢} — I* where Hj, C
2P1UP2U...UPt_1_

With the introduction of this scheduler, a new
class of meta-heuristics is available given by
the many possible instantiations of:

Of = fSy(M, LY, fSp(R, LY, P8t ¢h, 8", ¢

1

Vi€ {1,...,\}
Pt—I—l — S t’HtP t t’Pt’Ot t t t t
— m (Lg 7HP705(U7L}L 7P70757C)7
5%, ¢")

j7k7h7g€ {17"°7| LSS |}
(3)

and t as before.
25



With this model our MAs are (potentially) en-
dowed with:

e A Population that evolves by means of Crossover,
Mutation, Selection, i.e., the EA stuff

e A Population that is improved by means of one or
more Memes

e Mechanisms (i.e., the schedulers) to coordinate the
application of Memes

e Memes can be applied at the individual level, the
population level, the populations archive level (PAL).

e The assignment of a meme to {individual, population, PAL}
can be static or dynamic.

e Memes can be:

— - . the local search always performs the
same operations.

— H © the local search parameters are
adapted.

. the local search itself is gen-
a true meme.

erated, |.e.,

26



Taxonomy

We can go back to the MAs in the literature
and classify them accordingly to what part(s)
of the model presented here they use. We use
the three schedulers as indexes into a taxo-
nomic architecture of MAs:

if A is a MA then D(A) is its index (binary
representation) in the taxonomy.

D(A) = b(mS),b(cS),b(fSr),b(fSm) where:

b — O if scheduler x is absent
Y71 1 if scheduler x is present

for x € {mS,cS, fSr, fSm}.

The ordering of bits assigns the least significant to the
fS associated to mutation, then to the one associated
to crossover, then to the update function, then to PAL,
in relation to the (potential) cardinality of the local
searchers scheduled.

27



Classification of some MAs found in the liter-
ature for the following problems:

o N= TSP
o & = QAP
e x= MGC
e 0 = BPQ

e 1 = PFP and Protein Docking

e xXI= General Studies

e & = Other Applications

28



D=0 : EA
uncountable many papers.

D=1: EA + fSy
*[CHD95], ®[BN99, MR99]

D=2: EA + fSr
A[AVI7, FM96a, FM96b, NK97, WRE198], ¢[FF93],
*x[FF97, DH98]

D=3 : EA —|— fSC + fSM
A[HM99, Mos99, MF97], =[MF98], B[DAS97, BSS99]

D=4 : EA 4+ ¢S
#1[KS00, RHHB97], A[KS00],<[Har94, Lan98, T G97,
MIG99]

D=5: EA 4+ ¢S + fSu
®[DBHO8]

D=6 : EA 4+ ¢S + fSx
S[MF99a],0[MF99b]

29



D=7 : EA +-CS-+-fSX +—fSM'
>1[Sal98],®[VFJ]

D=8 : EA 4+ mS
none

D=9 : EA + mS + fSy
none

D=10: EA + mS + fSx
B[KCOO0]

D=11: EA + mS + fSx + fSu
none

D=12: EA + mS + ¢S
none

D=13: EA + mS + ¢S + fSu
none

D=14: EA + mS + ¢S + fSx
none

D=15: EA + mS 4+ cS + fSx + fSmu
none
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D

15

14

13

12

11

10 *

9

8 mS

7 X 3k

6 * *

5 *

4 | % X 3k CS

3 | * X 3k

2 |k )k >k fSR

1 * * Sy

EA:AO O x o § <D
Problems

Optimization problems versus the taxonomic
index D of the Memetic Algorithm architec-
tures applied to them.
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Memetic Algorithms, Hyperheuristics
and VNS

As shown in previous slides, the model pre-
sented captures a wide range of algorithms. In
general we find that:

o if uyA >1 & |LSS| > 1 & dynamic/static
schedulers —

o ifu=XAx=1&|LSS|>1 & dynamic sched-
ulers = |} (C<S01, CKSO02]

o if u=XA=1& |LSS| > 1 & static sched-

ulers = I8

As the free lunch theorems[WM95, Cul98] suggest no
algorithm is best on all cases, which implies that more
complex architectures (or for that case simpler ones) are
not always the best choice.

32



Part 3

e Design issues for a robust engineering of
competent MAs

33



We will try to address some of the following
ISSuUes:

m VWhere/when do we apply local search?

mm VWhich individuals in the population will be improved
by local search?

g How long/wide should the local search be?

mm VWhat neighborhoods, acceptance criteria, etc the LS
will use?

mm How do we integrate the standard genetic operators
with local search?

mm Shall we use a Baldwinian or Lamarckian model for
optimization?

mm Which is the fitness landscape an MA is exploring?
mm How do we engineer an MA that can jump out of
deep local optima or traverse large neutral plateaus?
m VWhat is needed for an MA to be able to cope with
Multi-objective problems?

mm How premature convergence can be averted?

gm Help from theory?

34



In Adaptive Global Optimization with Local
Search [Har94] and Evolutionary Algorithms
with Local Search for Combinatorial Optimiza-
tion [Lan98] the authors studied:

e \Which individuals in the population will be
improved by local search?

e How long/wide should the local search be?

e Shall we use a Baldwinian or Lamarckian
model for optimization?

35



In Memetic Algorithms for Combinatorial Opti-
mization Problems:Fitness LLandscapes and Ef-

fective Search Strategies [MerO0] the author
studied:

e T herelationship between fitness landscapes
and MA performance

36



In Studies on the Theory and Design Space of
Memetic Algorithms[Kra02] the author stud-
led:

e \What neighborhoods, acceptance criteria,
etc the LS will use?

e How do we integrate the standard genetic
operators with local search?

e How do we engineer an MA that can jump
out of deep local optima or traverse large
neutral plateaus?

e How premature convergence can be averted?

37



In Local-Search and Hybrid Evolutionary Al-
gorithms for Pareto Optimization [Kno02] the
author studied:

e What is needed for an MA to be able to
cope with Multi-objective problems?

38



In Studies on the Theory and Design Space of
Memetic Algorithms[Kra02] and Problemas de
Otimizacao NP, Aproximabilidade e Computacao

Evolutiva:Da Pratica a Teoria [Mos01] the au-
thors studied:

e The impact of complexity theory and Kol-
mogorov theory for MAS

39



Baldwinian Vs. Lamarckian

Fitness

Phenotype

Genotype
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Lamarckian learning:

e A genetic modification (by means of LS)
that is beneficial for the individual is ac-
quired in its life span.

e the modification is subject to propagation
and selection into future generations.

e T his is achieved by coding back into the
genome any improvement found by the learn-
ing/optimization mechanism.

e [ his process is in direct opposition to the
central dogma of biology as stated by Au-
gust F.L. Weismann in the XIX century[Wei93]
and is only possible when the inverse map-
ping, i.e., phenotype — genotype, iS com-
putable and practical (i.e., not too expen-
sive).

41



Baldwinian learning:

e Concurrently discovered by Baldwin[Bal96],
Morgan[Mor96] and Osborn [Osb96] at the
end of the XIX century.

e Baldwinian learning in MAs[Tur95],[Tur96a],
[Tur9e6b], [TWA96] can be regarded as the
application of LS with the sole purpose of
fitness evaluation or development (see for
example [HKB95],[KM98] and references
therein).

e Baldwinian learning shows its effect through
a process that Waddington [Wad57] sum-
marizes as Adaptation during development
+ canalization of development + genetic
assimilation. (referred to [Tur96b] for a
position paper on Baldwinian Learning.)

42



If LS directly modifies the genotypes the EA
IS working with, then it is a Lamarckian MA
regardless of which stage the LS was applied.
If LS is only used to bias the search of the
EA then it is a Baldwinian MA.

What is the impact of individual optimization
on population evolution?

Assume[Mit97]

e Individual learning has no direct influence on indi-
vidual DNA

e But ability to learn reduces need to “hard wire”
traits in DNA

Then

e Ability of individuals to learn will support more di-
verse gene pool

e Because learning allows individuals with various “hard
wired’ traits to be successful

e More diverse gene pool will support faster evolution
of gene pool

— individual learning (indirectly) increases rate of evo-
lution

See classical experiment by Hinton and Nowlan[HN87]
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Frequency of Local Search

NN
N
VARRVASRVA

Three hypothetical cases where |local search
can(?) help the evolutionary process:

e On the left, LS will probably not improve the EA’s
efficiency. Although the LS will move points to-
ward local optima this can be achieved by the EA’s
selection itself as the range of values is wide.

e On the right, vigorous LS will probably enhance
the EA as the points drawn from the two basins
of attraction will not distinguish where the global
optimum really lives.

e T he curve in the middle is an intermediate case
where an MA with moderate amount of LS can be
most efficient.
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Hart in [Har94] run a set of experiments on:
e Griewank
e Modified Griewank

e Rastrigin

He compared:
e Monte Carlo(MCQC)
e MultiStart(MS)
e Conjugate Gradient(CQG)
e Genetic Algorithm(GA)
e MA= GA+4CG(0.0625)
e MA= GA+CG(0.25)
e MA= GA+CG(1.0)
e Solis-West(SW)
e MA= GA+Sw(0.0625)
e MA= GA+CG(0.25)
e MA= GA+CG(1.0)
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The number between parenthesis represents
the frequency of local search for the MA. The
MASs used were in class D=4 of the taxonomy
described before.

Although the ¢S schedules local search for each
individual at a time, it assigns to every individ-
ual the same probability of local search (A).

AsS it can be expected, no single algorithm was
found to be best for all experiments, but it was
possible to conclude that the MAs with low fre-
quency of local search were more adequate for
solving problems with large e—accuracy (pre-
vious figure to the left). On the other hand
when the expected accuracy for solutions was
high, then MAs with frequent local searches
were better (previous figure to the right).
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Hart concluded that:

Refining individuals with local search
can improve the efficiency of the GA-
LS hybrids in two ways. First, the local
searches may generate better solutions
more efficiently than the GA’s compet-
itive selection. Second, the fithesses
of the refined solutions may reflect the
domain-wide characteristics of the ob-
jective function more accurately, espe-
cially when complete local searches are
performed.
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On a different experiment he showed that if
elitism is introduced then:

e the required frequency of local search must
be reduced.

e there were cases were the elitist version of
a GA was more efficient than the MA

and he concludes:

There may be some functions for which
local search does not improve the ef-
ficiency of the GA. In the absence of
prior information about the function,
these results recommend the use of elitism

in the GA-LS hybrids.
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Adaptive Local Search Frequency:

These methods aim to reduce the number of
local searches used in each generation when
there are redundant solutions in the population
or when several solutions are clustered around
different basins of attractions.

The ¢S is allowed to change the frequency of
LS, A, accordingly to several schemes:

e Complete method: A; = & where N; is the num-

ber of individuals in the population (known to the
cS) which represent identical solutions to the prob-
lem. Expensive O(N?).

e Local approximation: A; = 1—|—77(N—/\1i)5(p1p2) where

n € [0,1] and §(.,.) is the Kronecker function. Uti-
lizes information from previous crossovers between
D1, p2.

AY
NI
1-%

number of duplicate pairs of parents.

e Global approximation: A; = where N’ is the

e Redundancy from distance matrix: This is a so-
phisticate (and expensive) method of updating A.
Based on F' statistics and has resemblance to Gold-
berg and Richardson[GR87] Fitness Sharing.

49



Conclusions for the problems and algorithms
mentioned before:

e Any of the methods in the previous slides
produce better results than the tradition-
ally fixed A = 1 local search.

e From Hart's experiments it is possible to
conclude that large populations that use
fixed frequency of local search benefit from
low frequencies for LS.

e Traditionally MAs use small populations with
very frequent local searches. Here we see
a departure from conventional wisdom: use
large populations and infrequent local searches.

e If elitism and fixed frequencies are used
then reduce further A.

50



Fitness Distance Correlation

P.Merz in [MerO0] and other papers extensively
studied the fithess landscapes MA explore.

Fithess Distance Correlation:

-

— Cov(f,dopt)
Q(fa dopt) — U(f)U(doZ;t) 7

Q(fa dopt) ~ a(f)la(d)% Ziih(fz — ?)(dz — E)

where we are given a set of points 1, xo,...,Tm

that generate the time-series f(x1), f(x2),..., f(zm),
d; = dopt(x;) the shortest distance to a global
optimum.
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What can we learn from plotting o(.,.)?
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A word of caution:

e in general it is difficult (if not impossible)
to adequately assess the distance to an op-
timum. Local optima are used and these
need to be carefully chosen.

e in general people do not use the operators
their algorithms employ to measure the dis-
tance to (sub)optima.

e the metric used to measure distance must
be related to the operators the algorithm

employ(!)

e watch out for misinformation, that is, anti-
correlation(!).
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Quality of Sampling

In the figure (from [Lan98]) the EA sample is
misleading: the sampled points correlate nega-
tively with the quality of local optima =—. We
need to (better) integrate EA with LS.
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A Tighter integration of Local and Global Search
(from M.W.S. Land Ph.D thesis[Lan98]):

Steady-State EA with Local Search

Generate Initial Population

Do LS sniff on each member

Repeat

Select two solutions, biased towards fit

Create new by crossover and mutation ” | SN*

0
10*
20

IV.D.5
IV.D.6

Do LSsniff on new

HE *
UF
HS | IV.D2
us
0
1N
10N
Standard * 20/N
Random
None D4 VD3

Replace worst member of population with new

Select LSrate membersto do

Randomly *

Fitness-based
LS Potentia

IV.D.6

Lamarckian *
Darwinian

LSincrement additional LS 'VP7

IV.D.5

0
10*
100

IV.D.5
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Some conclusions from Land’s work:

e Land’'s MA proposal integrates more tightly Local
and Global Search by using intelligently fSx and
cS. (for additional theoretical considerations on this
issue see [GV9I9])

e Crossover is redundant for a MA working on Graph
Bisection as LS does the same job! — composi-
tionality hypothesis.

e Proposed rule of thumb: When LS is used with
Lamarckian evolution, the appropriate size of mu-
tation will be at least as large as the typical basin
size. This implies a sometimes massive mutation
(in effect macromutation).

e If complete LS takes place then there is evidence
that Baldwinian evolution is competitive and robust
— related to the compositionality hypothesis as
LS will always find the building blocks if it is a
complete search.
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If we want to better integrate the genetic oper-
ators with the local searchers why not produce
crossover-aware-local-searchers and mutation-
aware-local-searchers by means of the fine-grain
schedulers (fSys, fSx) mentioned in previous
slides?:

e A local searcher that is used in an MA ac-
cepts a new point as its next search point
only if it improves the objective function.

e \Whether this disrupts the search done by
crossover or mutation is seldom (never?)
taken into consideration.

Krasnogor in [Kra02] proposes to make the lo-
cal searcher(s) and the genetic operators to act
in unison and synergetically by construction:
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e Ccrossover-aware LS: fSxy may enable the
local searcher to crossover any new point
that it is considering with a representative
sample of the population. Then, the next
point where to move to is the one that
produces the better average fitness result-
ing from crossing over that candidate point
with the sample of the population.
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Crossover_Aware_Local_Search (z,S,n(),X()):
Begin
/* x is the current solution */
/* S is a small sample of the population */
/* n() is a polynomial-time computable neighborhood */
/* X() is the crossover operator in use */
Repeat Until ( finalization criteria is met ) DoO
For n := a neighbor € n(z) TO last neighbor DO
Produce P’ by crossing-over n with ;
every member of S using X();
Compute the average fitness of P’, store in F';
If (F > best_average_fitness) Then
next_solution = n;
best_average_fitness = F';
Fi
Od
x = next_solution;
/* The returned solution is the one for which */
/* its crossover with a reduced sample of the */

/* population produces the best average fitness */
Od

End.
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e Mmutation-aware LS: fS;; may enable the
local searcher to maximize the variance of
the fitness obtained when the selected point
Is the object of a reduced number of mu-
tations. A higher variance helps to keep
diversity.
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Mutation_Aware_Local_Search (x,n(),M()):
Begin
/* x is the current solution */
/* n() is a polynomial-time computable neighborhood */
/* M() is the mutation operator in use */
Repeat Until ( finalization criteria is met ) DO
For n := a neighbor € n(z) TO last neighbor DO
Produce P’ by generating a number of mutants;
of n by means of M();
Compute the fitness variance of P’, store in V;
If (V > best_fitness variance) Then
next_solution = n;
best_fitness_variance =V ;
Fi
Od
x = next_solution;
/* The returned solution is the one for which */
/* its reduced sample of mutants produces */
/* the largest variance in fitness */
Od
End.
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Revisiting Local Optima, Basins of Attraction
and the Dynamics of Search

Schematic representation of a multi-dimensional fitness landscape. T his
graph was called disconnectivity graph in [BK97]. Each level of the
graph (e.g., 2,1,0,-1,-2) corresponds to a fitness barrier e. Each fat
dot represents the basin of attraction of a local optimum. Every
walk within a given basin does not cross fitness barriers higher than
the corresponding e.
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Dynamics of search:

1. The MA starts the search with samples
from different vertices of the DG.

2. Then it will collapse the population to a
particular basin (when it is converged)

An hypothetical trajectory is: A - B — C —
D. If we want the MA to explored the unnamed
pbasin connected to D by C then it will need to
bypass a fithness barrier given by e¢qp.

Another case: if the MA is trapped in B (and
the global optimum is in H) then we need to
provide the MA with a mechanism to jump
across the fitness barrier with an e> and then
A—-F—>F —G— H.
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Two mechanisms that allow the MA to do just
that;:

e adaptive helper based on a Monte-Carlo lo-
cal searcher[Kra02]

e adaptive helper based on fuzzy-logic local
searcher[KP02]
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The adaptive helper based on a Monte-Carlo
local searcher motivated by:

e In the memetic algorithm literature, keeping pop-
ulation diversity while using local search together
with a GA is always an issue to be addressed, either
implicitly or explicitly. Usually this takes the form
of complex operators or sophisticated book-keeping
and/or guiding strategies 4+ sometimes population
structures.

e In the multi-agent literature, different annealing schemes
were proposed together with different ways of shar-
ing either solutions, annealing schedules or tem-
peratures. Several inter individual coupling mecha-
nisms were investigated.

e Boese [Boe96] showed that for optimization the
optimal annealing schedule does not cool-down mono-
tonically but rather oscillates!.
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The temperature in the pseudocode below is

1 i
temperature = )
p |PMamFitness_PAngitness|
ApplyMove(indip):
Begin

/* This is a Maximizing process */
prevFitness = fitness(indip);
Modify (indip) ;
nFitness = fitness(indip);
If (prevFitness < nFitness) Then
Accept configuration;
Fi
Else
deltaFl = prevFitness — nFitness;

delta

threShOld pr— e_k*temperature .

9

If (random(0,1) < threshold) Then
Accept configuration;
/* even if worse than the previous one */
Fi
Else
Reject changes;
Esle
Esle
End.
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The induced dynamic is such that:

1. When the population is diverse = the fit-
nesses in the population are spread —
temperature is low —= only accept improv-
ing moves (EXPLOITATION).

2. When the population is converged on a lo-
cal optimum the fithnesses are similar —
temperature rises = accepts moves that
deteriorate the objective value (EXPLO-
RATION)

Point 1 leads to 2 leads to 1 leads to 2 ...
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In [Kra02] Krasnogor shows that this simple
and cheap mechanism improved:

e final fitness

e and was able to keep runs’ diversity longer.

As the temperature is a function of first order
statistics (e.g. average fitness) diversity was
measured as the number of different fitness
values cases.

(Caution show be used with the definition of
diversity and its relation to evolutionary suc-
cess [BGKKO02])

Results were reported for a variety of Protein
Structure Prediction Models and TSP.
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The adaptive helper based on a fuzzy-logic lo-
cal searcher is motivated by:

e Crisp criteria for the acceptance of new so-
lutions are inadequate and/or myopic.

e fuzzy-logic provides easy to understand, hence
to implement, robust intuitive criteria for
exploring local neighborhoods.

e we can adapt the neighborhood explored
via feedback of the state of the search.
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In [KP02] we integrate Multimeme algorithms
with Fuzzy-logic based helpers of the form:

Procedure FANS:
Begin
k:=maxK;
While ( not-end ) Do
/* The neighborhood scheduler, NS, searches */
/* the locality of the current solution */
/* via operator OF */
Snew = NS(Okall;Scur)§
If (Spew is good enough in terms of u()) Then

Scur = Onew 3
adaptFuzzyValuation(u(), Scur) ;
Fi
Else

/* NS is not able to obtain a good */

/* enough solution. The operator will be */
/* changed by way of modifications to */

/* the parameter k */

If ((k=1)) Then

k:= maxK; ;
Fi
Else
k := k-1;;
Esle
Esle
Od
End.
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The good enough is defined in terms of the
fuzzy-valuation function u(). Several reason-
able u() can be defined:

AN

B f(s) Left f(s) Right
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FANS based memes have:

e expression power of fuzzy-logic

e Vvariable neighborhood search elements

With these helpers we discovered new global
optima for lattice based instances of the Pro-
tein Structure Prediction.
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Multimeme Algorithms

The majority of MA use a unique, complex and
powerful local searcher, e.qg., Lin-Kernigham or
K-opt for TSP or Conjugate gradient for con-
tinuous Problems.

This is feasible iif a powerful LS is known, and
even if it is known, is it reasonable?

The exploitation of several search neighbor-
hoods (memes in this context) is the basic
foundation of Variable Neighborhood Search
[HMO1]:

e several LS are scheduled to produce a more
reliable search by jumping from one induced
landscape to another one if/when the search
is stagnated. See the DG graph(red lines).

Several other metaheuristics employ the same
trick, among them, FANS, HyperHeuristics,VNS,

etc.
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In “Studies on the Theory and Design Space of
Memetic Algorithms’ Krasnogor investigates
the adaptive use of several LS in MAS.

e In contrast with VNS,FANS or HH where just one
solution is kept at all times, by the evolutionary na-
ture of the MA, several solutions are used to search
for global optima.

e Not all individuals (solutions) search with the same
neighborhood (unless one neighborhood is clearly
superior to the rest), so a parallel search is done on
all the landscapes induced by the different memes.
This again differs from VNS where just one neigh-
borhood at a time is used.

e The approach automatically recognizes which is/are
the most promising neighborhood(s) to explore at
any given point in time and potentially includes
both the fixed permutation of neighborhoods as
VNS does and random permutations

e Memes that are considered harmful can be disable
and re-introduced later for search
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Protein Structure Prediction Example:

e an individual is (genes, meme(plex)) pair.

e the genes encode for solutions to the prob-
lem

e the meme(plex) represents one or more LS
behavior.

The memepool contains:

e four types of LS: MM,R,S,P.

e MM,R,S come in 3 flavors.

e total number of LS = 9
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From Krasnogor[KHSP99]

In

gene space: Crossover,Mutation,Selection

[ GENES: FFFLFLLRFFFFR}
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Individual %
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MEMES:
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In meme space: Replication,Mutation,Selection
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Static Memes | O/R | MFHT

GA (no memes) | 0/10 -

MA with Macro Mutation (r=4) | 4/10 | 73.25
MA with Macro Mutation (r=8) | 2/10 25.5
MA with Macro Mutation (r=16) | 0/10 —-
MA with Reflect (r=4) | 2/10 19

MA with Reflect (r=8) | 0/10 —

MA with Reflect (r=16) | 2/10 31.5

MA with Stretch (r=4) | 0/10 —

MA with Stretch (r=8) | 0/10 —

MA with Stretch (r=16) | 0/10 —

MA with Pivot | 6/10 20.33

MultiMeme (all local searchers) | 7/10 | 23.71

Number of times and mean first hitting time (in generations) to
achieve an optimal solution to instance 14. Different algorithms are
compared based on 10 independent runs. These are Static Memes.
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Static Memes | SO/R | MFHT

MA with Macro Mutation (r=4) 1/10 150
MA with Macro Mutation (r=8) 0/10 —
MA with Macro Mutation (r=16) 0/10 —-
MA with Reflect (r=4) 0/10 —-

MA with Reflect (r=8) 0/10 —

MA with Reflect (r=16) 0/10 —

MA with Stretch (r=4) 0/10 —-

MA with Stretch (r=8) 0/10 —

MA with Stretch (r=16) 0/10 —

MA with Pivot 2/10 82

MultiMeme (all local searchers) 5/10 64.8

Number of times and mean first hitting time (in generations) to
achieve an optimal solution to instance 19. Different algorithms
are compared based on 10 independent runs. These are Adaptive
Memes.
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Static Memes | O/R | MFHT

GA (no memes) | 0/10 -
Macro Mutation (r=4) | 5/10 85.0
Macro Mutation (r=8) | 2/10 100.0
Macro Mutation (r=16) | 1/10 100.0
Reflect (r=4) | 3/10 27.3

Reflect (r=8) | 2/10 63.5

Reflect (r=16) | 1/10 100.0
Stretch (r=4) | 0/10 -

Stretch (r=8) | 0/10 -

Stretch (r=16) | 0/10 -

Pivot | 5/10 67.4
MultiMeme(IR=0.2) | 7/10 | 23.71

Relation between the number of times the single meme
algorithm reached optima relative to the number of runs
executed for different memes. Also, in the third column,
the mean first hitting time is computed. The last row
presents the associated values for the multimeme algo-
rithm. Memes are static helpers. Instance 15

Many more examples on different models of
Protein Structure Prediction, Protein Struc-
ture Comparisons, TSP, NK-Landscapes and
dynamic OneMax showed similar trends: The
use of multiple Local Searchers produces more
robust (and efficient) memetic algorithmes.
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How does the Multimeme Algorithm decides
which meme to use?

with a simple inheritance mechanism called SIM:

Formally a (potentially) poly-parental SI mech-
anism is

_ Lt~ if Vk,j € P(i),k # j, L1 == [t~1.k
Lt ={ L[t if F(I5Y) > F(I; Y)Vk,j € P(i),k # j
Li=VEfor k € |P(i)]  otherwise

(4)

There is an innovation rate parameters that
overrides the previous mechanism[Kra02] and
ensures that memes are re-introduced in the
population.
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We can visualize how the Multimeme algorithm
employs its memes by plotting[BN92]:

0 (t) = { JEei(®)dt if ¢;(t) >0 (5)

0 otherwise

and by using this analyse/suggest ways to im-
prove search.
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Evolutionary Activity Vs #Generations(30 runs averaged)
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(lin318.tsp):The evolutionary activity of a MultiMeme
algorithm is shown. Several K-exchange LS are used as
memes
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Concentration Plot for 118
IR=0.2, Multimeme Static Helpers
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(Instance 18): Meme concentration as a function of
generation number for instance I18.

86



Toward Truly “memetic’ Memetic Al-
gorithms: discussion and proofs of con-
cept

e The name "Memetic algorithm’” is a very
contested label that stirs critics and con-
troversies among researchers and practi-
tioners.

e It is important not to call these algorithms
“hybrids” as we do not know hybrids of
what we are talking about, e.g. a hybrid
between a GA and Tony Blair? (a “third
way"” GA7?)

e If we stick to the name Memetic Algorithm
there is much to be learn

BUT we need to put back the memetics into
memetic algorithms!
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Memetic theory started as such with the def-
inition given by R. Dawkins of a meme as a
unit of cultural inheritance[Daw76][Daw82]:

I think that a new kind of replicator has recently
emerged on this very planet. It is staring us in the face.
It is still in its infancy, still drifting clumsily about in its
primeval soup, but already it is achieving evolutionary
change at a rate that leaves the old gene panting far
behind. The new soup is the soup of human culture.
We need a name for the new replicator, a noun that
conveys the idea of a unit of cultural transmission, or
a unit of imitation. “Mimeme” comes from a suitable
Greek root, but I want a monosyllable that sounds a bit
like *“gene”. I hope my classicist friends will forgive me
if I abbreviate mimeme to meme.(2) If it is any con-
solation, it could alternatively be thought of as being
related to “"memory”, or to the French word “méme’.
It should be pronounced to rhyme with “cream’” . Exam-
ples of memes are tunes, ideas, catch-phrases, clothes
fashions, ways of making pots or of building arches. Just
as genes propagate themselves in the gene pool by leap-
ing from body to body via sperms or eggs, SO memes
propagate themselves in the meme pool by leaping from
brain to brain via a process which, in the broad sense,
can be called imitation.
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Many other researchers and philosophers flirted
with the idea that cultural phenomena can some-
how be explained in evolutionary terms even
before Dawkins introduction of a meme:

m-culture and i-culture, culture-types, etc.

The merit of Dawkins is that he defined a new
signifier (meme) to the thing being signified
(the unit of cultural transmission).

As a new word, it was not loaded with pre-
conceptions and from a CS point of view it
was appealing as it implies a discrete (albeit
unknown) structure.
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The fundamental innovation of memetic the-
ory is the recognition that a dual system of
inheritance, by the existence of two distinct
replicators, mould human culture.

How this is related to optimization?

e different optimization methods are thought
as different behaviors.

e behaviors are encoded as memes.

e memes evolve.

e hence optimization methods can be evolved
(not only solutions but also the way to ob-
tain solutions are evolved).
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Memetic Theory in Evolutionary Computation

Ta Ta

P1 P1 P2

Ta Ta
Ta Ta

Evolutionary genetic cycle from [Dur91].

The “standard” evolutionary algorithm paradigm.
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/M /M
M1 > M2 > 3
Tc Td Tc Td

P1 P1 P2 P2

Ta Ta

Ta Ta

Ta Ta

paNc Tb paNc
61 [~"T77° > G G [T C > G2

Coevolutionary memetic-genetic cycle from [Dur91].

What the “standard”’” memetic algorithm paradigm should
look like if memetic was taken seriously.
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In the first graph there are epigenetic phe-
nomena, e.d., interactions with the environ-
ment, in-migrations, out-migrations, individual
development, etc and also Mendelian principles
which govern genetic inheritance that trans-
form the distribution of genotypes. Only genes
are taken into consideration — GEC has so
far concentrated in implemented many facets
of this graph.

In the second graph genes (solutions) and memes
(improvement methods) co-exist. In a memetic
system memes can potentially change and evolve
using rules and time-scales other than the tra-
ditional genetic ones. Cavalli-Sforza[CSF81]
argues that memetic evolution is driven by:

...the balance of several evolutionary forces:
(1) mutation, which is both purposive (innova-
tion) and random (copy error); (2) transmision,
which is not as inert as in biology [i.e., con-
veyance may also be horizontal and oblique];
(3) cultural drift (sampling fluctuations); (4)
cultural selection) (decisions by individuals); and
(5) natural selection (the consequences at the
level of Darwinian fitness) ...
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Besides the traditional genetic transformations
as those of the first graph we also have for
memetics:

e learn memes
e adopt memes
e imitate memes
e modify memes
Also
e memes can be taught
e memes can be preached

e memes can be advertised

Memetic algorithms, as they were used so far,
failed completely (or almost completely) to im-
plement this dual inheritance system to any

degree.
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but why should we (optimizers) care?

Because we know that different problems, dif-
ferent instances and different search states re-
quire different actions. Because not for every
problem we have well-tested “winner’ heuris-
tics like a Lin-kernighan or K_opt.

Hence:

e we could evolve those actions on-the-fly
=

e Self-Generating Metaheuristics —

e Self-Generating Memetic Algorithms [Kra02]

(a big opportunity (and challenge) for GPers)
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In [KPMRO98], [KdICPT98] and [KHSP99] we
initiated research on Self-Generating MAs of

3
i

the form:

In gene space: Crossover,Mutation,Selection

( GENES  FFFLFLLRFFFFR)

Developing

Individual ° /
1&2&3

Behaviour

: F-
e

In meme space: Replication,Mutation,Selection

for models of Protein Structure Prediction.
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We also developed Self-Generating MAs for
NK-Landscapes. We self-generated LS in the
form of rules tnitial Pattern — endPatter.

The rules specify the radius of action of the
local search, that is, the number of bits that
should be condidered for improvement (similar
to a variable K-Opt LS).

We tried the SGMA in 4 different regimes of
NK-Landscapes:

e low epistasis, poly-time solvable: (50,1), (50, 4) with
adjacent neighbors.

e high epistasis, poly-time solvable: (50,8), (50,10),
(50,12),(50,14) with adjacent neighbors

e low epistasis, NP-hard: (50,1),(50,4) with random
neighbors.

e high epistasis, NP-hard: (50,8), (50,10),
(50,12),(50,14) with random neighbors.
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High epistasis, poly-time solvable:

NK-Landscape (50,10)

coc0000000352
239 BTSRRI
80x10" [~ T a =
sou; T T — 80x10"
o [ = _ = — = R
730" [ H £l
SSXE_ [ - 7.3x10"
i - 7000*
Tesx0” ot
o - 65x10"
06.0x10" E
58x10" it
seart -] 5:8x10"
seun -] 5.5x10"
50410 = E bt
55000000000000000000000000050000000000 50a0”
R R R SE R R e e e I eI =it e s
» NESRRNENEERRRSANSI B858RIV ITRANBIBEERRS
2 - 0
2 %
2 %
£ =2 2
5 % %
g 2 i 20
P = 1
o = 7 pt
m 12 B 7 EE 1
10 (- = e =20 =4l
= 5 - \/ = ot =0
s\t = T H
s /. iy 6
s 4
2 o 2
012345678910123456 yrm P
NK-Landscape (50,
8.2x1
820 - 82x10"
e00 1 r - sox10*
7.5x10 = == T ——
Squs s - 75x10"
E70x10 E oo
Froag, - 7.0¢10"
foso’ § hosir
qs2x10* Gt
0210 - 62x10"
so0; 7 60x0*
seant - s:8x10"
5.2¢10" [ 8 fowr
soo | - 5:2x10"
e 2, 50:10"
. 8
® £
® 3
- 0
Ww 2 o
2 2
2 o
3o N 2
: B b A 18
12 &Y = AN = 5L
= ol SOCTANLERT 2
o s - = c % A
s 6
B 3
o

NK-Landscape (50,14)

Meme Length

ons oo

Generations

NK(50,10), NK(50,12) and NK(50,14). Adyacent neighbours.
99



Low epistasis, NP-hard:
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High epistasis, NP-hard:
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The evolved rules fit different problem sce-
narios.

For each problem regime, different types
of rules are evolved.

The range of regimes studied is significant
as it spans from low epistasis problems to
highly epistatic instances, and in an orthog-
onal dimension, from polynomial time solv-
able to NP-hard instances.

The Self-Generating MA is clearly behaving
differently for each regime without human
intervention.
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Invitation to Men of Theory

Memetic Algorithms are unique in the sense
that:

e they exploit evolutionary metaphors and

e traditional local search insights.

Evolutionary Computation theory is obviously
relevant but so it is local search theory!
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LLocal search has been rigorously analyzed with
the so called Polynomial Local Search Com-
plexity Theory[Yan97][JPY88].

This has recently been investigated by Land[Lan98],
Moscato[Mos01] and Krasnogor[Kra02] for MAs.

— much more must be done!

e Moscato[Mos01] presents a nice compendium of
complexity results with a view to Memetic Algo-
rithms (in Portuguese). He argues, following the
paper Parameterized Complexity: A Framework for
Systematically Confronting Computational Intractabil-
ity by Downey,Fellows and Stege (in English), that
parameterized complexity can be used to guide the
design of genetic operators.

e Krasnogor[Kra02] shows the PLS-completeness of
a family of MAs and argues that Kolmogorov Com-
plexity Theory can be used to strengthen the bounds
traditionally obtained by PLS and worst case com-
plexity theory.

e Once Self-Generating Memetic Algorithms become
more mature Evolutionary Game Theory will come
into play.
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Conclusions

e There is much more to MAs than simply putting
a local search stage somewhere in the evolutionary
cycle.

e Just a small fraction of the architectural design
space has been explored and we do not know why a
given architecture performs well or bad for a given
problem yet.

e People usually use a unique LS. This is fine if that
“silver bullet” is known. Otherwise use Multimeme
algorithms: lots of simple local searchers can do
the trick if your MMA is allowed to choose them
on-the-fly.

e ADAPT: the search process is a dynamic process,
your LS should detect and react to the state of the
search (global/local).

e Not always small populations are better. Some-
times larger populations with infrequent local searchers
are best.

e Be careful about the assumptions you make on how
the genetic operators interact with LS(s).
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Investigate the usefulness of long vs short local
searches.

Investigate how you allocate LS trials in your prob-
lem.

Understand that the fithess landscape explored by
your MA is not a one-operator landscape but the
super-position of several operators-induced landscape.

Be cautious when you decide for a Lamarckian or
Baldwinian MAS.

Use more expressive acceptance criteria in your LS.

Understand PLS, Kolmogorov and Complexity the-
ories.

If you have a problem for which you have no idea
which memes to give to your multi operator MA
then let it find them by its own! use Self-Generating
MAS.

Self-Generating Memetic Algorithms (and SG Meta-
heuristics in general) are a great niche for GP!

106



Put back the memetic

Thanks to P. Merz, W.E. Hart, M. Land for allowing me to repro-
duce material from their Ph.D thesis and papers.
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