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Abstract

Common selection mechanisms used in Fvo-
lutionary Algorithms are combined to form
some generalized variants of selection. These
are applied to a Genetic Algorithm and are
subject to an experimental comparison. The
feature of extinctiveness as introduced in
Fvolution Strategies 1s 1dentified to be the
main reason for a considerable speedup of
the search in case of unmimodal objective func-
tions.

1 Introduction

Genetic Algorithms (GAs) [Hol75] and Fwolution
Strategies (ESs) [Rec73, Sch81] are two types of algo-
rithms which try to imitate the mechanism of natural
evolution. In this paper the generic term FEvolution-
ary Algorithms 1s used to denote such algorithms with
the common features of a population of individuals
which undergo Darwinian selection of the fitter indi-
viduals and which are subject to mutation and sexual
recombination processes [BH91, HB91]. The selection
mechanism of such algorithms plays an important role
for driving the search towards better individuals on
the one hand and for maintaining a high genotypic di-
versity of the population on the other hand. This is
directly related to the trade—off between high conver-
gence velocity and high probability to find a global
optimum in case of a multimodal problem, which is
a well-known problem in current research concern-
ing Evolutionary Algorithms [Bak85, Gol89, Sch81,
Whi89].

Within this work we look at the selection techniques
which are commonly used in Evolutionary Algorithms
and describe a set of possible generalizations and re-
combinations of them in section 2. These new selec-
tion mechanisms are compared by experiments with
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respect to two simple but important topologies of ob-
jective functions in section 3.

2 Selection Schemes

Proportional selection [Hol75, Gol89] and rank-
ing [Bak85, Whi89] are the main selection scheme used
in GAs, while ESs are based on several variants of

(p,A)—selection [Sch81].

To describe these techniques in a formal way the fol-
lowing notation is used: P! = (af,...,a}) € I* de-
notes the population at generation ¢ € N, A > 1 the
population size, and T is the space of individuals a!.
The fitness function f : I — R provides the environ-
mental feedback for selection. Furthermore a mapping
rank : I — {1,...,A} is given by the following defini-
tion:

Vie {l,...,A} : rank(a}) =i (1)
— Vje{l,... A—1}: f(a})Of(a},)

where O denotes the < relation in case of a minimiza-
tion task and > in case of a maximization problem.
Consequently, we can use the index ¢ to denote the
rank of an individual. In the following we assume that
individuals are always sorted according to their fitness,
with a! being the best individual of P?.

Selection 1n Evolutionary Algorithms is defined by se-
lection (reproduction) probabilities p,(a}) for each in-
dividual within a population. At present the following
selection schemes exist:

e Proportional Selection [Hol75]:

ps(af) = f(a})/ Y fla})

ji=1
e Linear Ranking [Bak85]:
1—1

A—-1

)

1
ps(ag) - X <77max - (nmaz‘ - nmzn)

where Nmin = 2 — Dmaz and 1 < npae < 2.



o (u,X)-Uniform Ranking [Sch81]:
I/p,1<i<p

N b =~ >~
“mﬁ_{ 0, u<i<A

While the latter two schemes are rank-based (i.e. in-
stead of the actual fitness their rank-index i is used),
proportional selection is directly based upon the fit-
ness values of all individuals. When (p,A)-selection
is also taken into account, a selection scheme can be
classified with respect to the following criteria:

o Dynamic versus static selection:

The selection probabilities can depend on the
actual fitness-values (proportional selection) and

opposite situation (left extinctive selection) where
some of the best performing individuals are pre-
vented from reproduction in order to avoid pre-
mature convergence due to super-individuals.

DEFINITION 5 (Left Extinctive Selection)
A selection scheme is called left extinctive:

<= Vi>0VP =(d,...,d})

Fle{l,..., A=1}: i<l = ps(al) =0
DEFINITION 6 (Right Extinctive Selection)
A selection scheme is called right extinctive:

< Vi>0VP =(d,...,d})

316{2,...,)\}2 1> = ps(az):()

hence they change between generations, or theyOf course, in any case the condition Z?le)séatl

can depend on the rank of the fitness-values ghlst be satisfied.

(linear ranking, (p,A)-selection) which resulggoin

With regard to this classifica-
proportional selection is a dynamic, preservative

fixed (static) values for all generations. Thisse@dme, while linear ranking realizes a static, preser-

easily be formalized as follows:

DEFINITION 1 (Dynamic Selection)
A selection scheme is called dynamic:

< Aie{l,... A}Vt>0 : pi(al)=¢;
where the ¢; are constants.

DEFINITION 2 (Static Selection)
A selection scheme is called static:

— Vie{l,.. , A}Vt>0 : ps(al) = ¢
where the ¢; are constants.

Extinctive versus preservative selection:

The term preservative describes a selection
scheme, which guarantees a non-zero selection

vative scheme. (p,A)-uniform ranking is static and ex-
tinctive. Hence, the main difference is the preserva-
tiveness and extinctiveness of the selection schemes,
respectively.

Apart from different assignments of reproduction rates
there are other characteristics of selection:

Elitist versus pure selection:

Normally, parents are allowed to reproduce in one
generation only. Then, they die out and are re-
placed by some offspring. A selection scheme
which enforces a life time of just one generation for
each individual regardless of its fitness is referred
to as pure selection. In an elitist selection scheme
some or all of the parents are allowed to undergo

probability for each individual, i.e. each individualselection with their offspring [Jon75]. This might

has a chance to contribute offspring to the next

generation. On the other hand, in an extinctive

selection scheme some individuals are definitely

not allowed to create any offspring, i.e. they have

zero selection probabilities.

DEFINITION 3 (Preservative Selection)

A selection scheme is called preservative:

<= Vt>0VP = (al,...,d)Vie{l,...,A}:
P a0

DEFINITION 4

A selection scheme is called eztinctive:

< Vi>0VP =(d},...;al)TFie{l,...,A}:
ps(aj) =0

Left versus right extinctive selection:

(Extinctive Selection)

In case of extinctive selection (def.4) there is a
major special case where the worst performing
individuals have zero reproduction rates, i.e. do
not reproduce. This situation is referred to as
right extinctive selection. Although it might be
of no practical relevance there may be also the

result in ‘unlimited’ life times of super-fit indivi-
duals.

DEeFINITION 7  (Elitist Selection)
A selection scheme is called elitist or k-elitist:

<~ Jke{l,.. A Vi>0Vie{l,... k}:
fla}) O fla;™")

DEFINITION 8 (Pure Selection)

A selection scheme is called pure iff there isno k €
{1,..., A} which satisfies the k-elitist property.

Generational versus steady-state selection:

With generational selection the set of parents is
fixed until A offspring, the members of the next
generation, are completely produced. In case of
selection on-the-fly or steady-state selection an
offspring immediately replaces a parent if it per-
forms better. Thus, the set of parents may change
for every reproduction step [Whi89)].

It should be noted, that steady-state selection 1s
a special variant of elitist selection (def.7) where
the set of parents incorporated into selection 1is
larger than the set of offspring of size 1.



By “recombining” the major characteristics of the ex-
isting selection schemes, proportional selection and
ranking can be generalized, which allows them to be
also extinctive:

DEFINITION 9 ((pt,A)-Proportional Selection)

(2)

| fahy/ Y fah) 1<i<p
ps(aﬁ)—{ S u<i<a

DEFINITION 10 ((pt,A)-Linear Ranking)
ps(a;) =

[t i) 1020

0 S p<t< A

Figure 1 tries to give an impression of the different se-
lection schemes and their interdependencies. In each
case selection probabilities versus the rank of the indi-
vidual are sketched by step-functions. Remember the
rank-ordering of individuals such that better individu-
als have lower ranks.

First, it should be noted, that each extinctive scheme
turns into the corresponding preservative scheme
for p = A. For (p,A)-uniform ranking the case gy = A
should lead to random walk where the selective pres-
sure towards better individuals is completely lost. The
random walk variant is of no interest but mentioned
here to complete the classification. (u,A)-uniform
ranking in ESs is obviously a special case of the ex-
tinctive linear ranking selection (9mqr = 1).

The selective pressure of the extinctive schemes can
be guided by the exogeneous setting of p. As p ap-
proaches A, the selective pressure towards the better
individuals is decreasing continually and selection be-
comes “softer”.

From theoretical investigations concerning (1,A)-ES
on a simple corridor and sphere model for the objec-
tive function, Schwefel derived values of A = 6.0 for
the corridor model and A &~ 4.7 for the sphere model
to achieve an optimum rate of convergence [Sch81].
The setting (pu/A = 1/5) emphasizes on the conver-
gence speed for unimodal problems; for multimodal
problems this ratio should be much higher in order to
allow for the exploration of the search space to some
extent.

With respect to super-individuals with a high fitness
value or individuals with just a poor fitness propor-
tional selection appears to be rather “hard”, since the
resulting rates of reproduction effectively discard the
poor ones while high preference 1s given to the good
ones, thus decreasing the genetic diversity quickly.
With rank-based schemes the same situation is less
drastic since the actual fitness does not influence the

realized rate of reproduction, thus yielding a slower
reduction of the genetic diversity. Hence, uniform and
linear ranking appear to be “softer” than proportional
selection.

3 Experimental Results

For the experimental comparison of the selection
mechanisms it is concentrated on the two examples
of objective functions given in table 1.

The functions f; and f; are representing the classes
of unimodal as well as multimodal functions. For f; a
high convergence velocity is expected to be sufficient to
approach the optimum, while for f; a more explorative
behaviour of the algorithm would give a chance to find
the global optimum. To obtain the results, a mod-
ified version of Grefenstette’s GENESIS-GA [Gre87]
was used here. The GA is defined by the following
parameter and configuration settings: Mutation rate
pm = 0.001; crossover rate p. = 0.6; population size
A = 50; length of an individual [ = 32n, where n de-
notes the dimension of the objective function'; two—
point crossover; Gray code. For ranking the usual set-
ting of Pmar = 1.1 (maximum expected value) was
chosen according to [Bak85].

Different values of p € {5,10,15,20,30,40,50} have
been used for the test runs, and for a comparison the
best values in each generation are plotted. The results
are based on the averaged values of 10 runs in each
case.

In the left parts of figures 2-4 the performances
of (p,A)—proportional selection, (p,A)-linear ranking,
and (p,A)—uniform ranking are shown for fi. Obvi-
ously the performance is maximized for rather small
values of p € {5,10,15}. In each case performance
decreases for growing values of p, finally turning into
the familiar normal ranking and proportional selection
plots and a random walk wandering for (g,A)—uniform
ranking, respectively.

A comparison of the different selection mechanisms for
the same values of p does not lead to a clear general
statement, since no large differences exist. A tendency
towards favouring (p,A)-linear ranking compared with
proportional selection and the latter compared with
(p,A)-uniform ranking can be deduced from a set of
graphics not shown here. The major improvement is
introduced by the idea of extinctive selection. This
result can be interpreted as an indication of the valid-
ity of Schwefel’s result for an optimum setting of the
ratio p/A in case of fi [Sch81] not only for ESs, but
also for GAs. Thus we can formulate the hypothesis,
that the effect of an extinctive selection mechanism is

' A length of 32 bits per object variable is used for the
representation of the real interval [Zmin, Tmax] to which the
bitstrings are mapped, in order to achieve a maximum res-
olution Az = (Zmax — zmin)/(232 —1).
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Figure 1: Sketch of selection schemes
| Name | Description Dim. | Characteristics | Ref. |
fi sphere model n = 30 | unimodal, [HB91]
@) =30 2f high—-dimensional | [Jon75]
—5.12<z; <5.12 [Sch&1]
fr generalized Rastrigin’s n = 20 | multimodal, [HB91]
function high—dimensional, | [TZ89]
(%) =nA+ 3 27 — Acos(wa;) f1 with sine
A=10;w=27;-5.12<=z; <5.12 wave superposition

Table 1: The set of test functions

very similar for both algorithms, independently of the
representation of the individuals and the special kind
of genetic operators.

For f; the results are completely different to the gen-
eral results for f;. The performance plots are given in
the right parts of figures 2-4.

At first glance the similarity of all plots characterizing
true extinctive selection mechanisms (p < A) becomes
apparent. Furthermore, all extinctive mechanisms as
well as preservative proportional selection get stuck in
local optima. Only preservative ranking, while pro-
gressing very slow in the early phase of a run, seems
to promise better results in the long run. Besides ran-
dom walk this is the only mechanism which behaves
basically different compared to the rest. From these
plots a cautious hypothesis about an optimum value
of p somewhere between 40 and 50 can be drawn up.

This completely inverse behaviour between f; and f7 is
expected to be caused by their topological differences
solely.

The remarkably different shape of the preservative
ranking mechanism for f; can be understood by look-
ing at the genotypic diversity of the populations. This
can be measured by the bias b (0.5 < b < 1) according
to equation (4).

Y. (=aiy), X el @

VP'=(af,...,a}) Vaj=(a}q,...,ak;) Vi>0
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Figure 2: (p,A)—proportional selection schemes on fi and fr

1000 :
c 100
[e]
©
) 10
c
8
8_ 1
I
0]
@ 0.1
0‘ 01 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
Generations
f1
1000 :
c 100 A\
[e]
©
) 10
c
8
8_ 1
I
0]
@ 0.1
0‘ 01 1 1 1 1 1 1 1 1 1

0 50 100 150 200 250 300 350 400 450 500
Generations

1000
c
(o]
©
]
c
8 100
)
o
»
Q
[04)]
1 O 1 1 1 1 1 1 1 1 1

0 50 100 150 200 250 300 350 400 450 500
Generations

Figure 3: (p,A)-linear ranking schemes on fi and fr

b indicates the average percentage of the most promi-
nent value in each position of the individuals [Gre87].
Smaller (larger) values of b indicate higher (lower)
genotypic diversity.

The preservative linear ranking mechanism shows a
fundamentally larger genotypic diversity than the ex-
tinctive ones (left part of figure 5). This is the property
which verifies the very slow convergence behaviour of
such a selection mechanism. However, it is not ex-
perimentally checked whether such behaviour can lead
to better solutions in the long run even for difficult
surfaces like that of f~.

A comparison of (50,50)-linear ranking and (40,50)-

linear ranking for a longer run on f; seems to confirm
this assumption, but the difference of the runs is rather
small (right part of figure 5).

There are two major effects to observe for different
degrees of extinctiveness (0 < p < 50) which depend
on the number of optima. In general for a unimodal
function like f; the best performance increases with
“harder” selection, 1.e. decreasing u, while it stays on
a similar level for most degrees of extinctiveness for
multimodal functions like f7;. This is not a general
fact. For different adaptation schemes the impact of
selection varies as can be seen from figure 6 which sum-
marizes the first results of a complete set of runs on
f1 and f7 for all types of selection and various degrees
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Figure 5: Bias and long runs for (g,A)-linear ranking selection schemes on f7

of extinctiveness with an Evolution Strategy according
to Schwefel [Sch81].

Evolution Strategies (ESs) work on a phenotypic level,
i.e. they operate directly on the set of real-valued ob-
ject variables z;. Mutation is realized by adding to
each z; a normally distributed random number with
expected value 0 and standard deviation o;. Recom-
bination may be discrete or intermediate. Theoreti-
cal considerations for a maximum rate of convergence
suggest that the optimal settings of the o; may de-
pend on the distance from the optimum, i.e. they are
a local feature of the response surface. Therefore, the
genetic information of each individual not only consists
of the z;, but also of the strategy parameters o; which

also undergo mutation and recombination before they
are used to mutate the z;. Better adapted settings of
the o; are expected to result in a better performance of
the x; with respect to the objective function. Hence,
selection automatically favours advantageous settings
of the strategy parameters o;. A detailed description
of ESs may be found in [BHS91].

Each curve in figure 6 shows the best solution obtained
after 250 generations for a particular selection scheme
with respect to various degrees of extinctiveness. Like
for the other experiments a population size of A = 50
was chosen; all values are averaged over 10 runs.
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Figure 6: Best performance of ESs on f; and f7 with respect to the degree of extinctiveness

In case of the unimodal function f; a high rate of
convergence 1is required for optimal performance. For
ranking this is achieved by a setting of u/A =~ 1/5,
which is pretty close to the theoretical results [Sch&1].
The curves for f; also partially meet the expectation
that a “harder” selection scheme (linear ranking) per-
forms better than a “softer” one (uniform ranking).
Proportional selection even results in a much “harder”
selection, which for a high degree of extinctiveness, is
not able to maintain a sufficient genetic diversity to
allow for a rapid adaptation of the strategy parame-
ters by means of recombination. This preference for
the best is advantageous if extinctiveness is lowered.
In that case the ranking schemes fail to maintain a
proper setting of strategy parameters finally leading
to a divergence from the optimum.

For a multimodal function like f7 a high genetic diver-
sity 1s required to explore the search space sufficiently.
Hence, the “softer” selection schemes (uniform and lin-
ear ranking) perform best with respect to the quality
of the final optimum. But if selection becomes too
“soft” the population is unable to maintain partial
solutions which may be used as a starting point for
further improvements. This is why the right illustra-
tion in figure 6 shows an optimum at p = 20 for the
ranking schemes while proportional selection performs
better with growing p. But even for proportional se-
lection some degree of extinctiveness is required for an
optimal performance.

4 Summary

Undoubtedly an extinctive selection mechanism pro-
duces a remarkable speedup for a unimodal function
like fi. This should be a sufficient reason to use such

selection mechanisms as a further way of guiding the
search of genetic algorithms.

In contrast by extinctiveness there is no improvement
of the results for a multimodal surface. Due to this rea-
son a superiority of selection mechanisms which main-
tain a high genotypic diversity can be concluded from
the experimental runs. The question remains how to
solve this contradiction concerning the algorithmic re-
quirements caused by different topological surfaces of
the actual optimization problem, which is noted as a
list of characteristic properties in table 2.

The term convergence confidence is used to describe
the probability to converge towards the global opti-
mum. For a multimodal objective function a high
convergence confidence is aspired, which requires an
explorative character of the search. To achieve this be-
haviour a “soft” selection scheme can be used in order
to maintain a large genotypic diversity of the popula-
tion during the search. The resulting search process
can be designated as volume oriented.

The corresponding appropriate properties for a uni-
modal problem aim at increasing the convergence ve-
locity. A rather “hard” selection mechanism forces the
search process into the gradient direction, resulting in
a path oriented, exploiting search. Consequently, the
genotypic diversity remains small.

Unfortunately, for a real-world application the user
does not know anything about the objective function’s
properties. Besides the usual parameterization prob-
lem (which settings are appropriate for A, I, pm, pe,
Dmaz?) a additional parameter is introduced by ex-
tinctive selection.

To solve this problem at least two approaches can be



unimodal objective function

multimodal objective function

convergence velocity
“hard” selection scheme
small genotypic diversity
path oriented

exploitative character

convergence confidence
“soft” selection scheme
large genotypic diversity
volume oriented
explorative character

Table 2: Unimodal and multimodal search properties

thought of. As shown by Schwefel in the framework of
Evolution Strategies [Sch81] the self-learning of strat-
egy parameters provides a powerful mechanism of in-
ternal adaptation of the algorithm with respect to the
objective function topology. This is often referred to
as second—level learning and provides an alternative
to the other approach of using a meta-level control

algorithm as desribed in [Gre86, GBGKS89].
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